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Abstract. In this paper we propose a new mixed virtual element formulation for the numerical approximation
of viscoelasticity equations with weakly imposed stress symmetry. The governing equations use the Zener model and
are expressed in terms of the principal unknowns of additively decomposed stress into elastic and internal viscoelastic
contributions, while the rotation tensor and velocity act as Lagrange multipliers. The time discretisation uses Crank–
Nicolson’s scheme. We demonstrate the unique solvability of both semi-discrete and fully-discrete problems by leveraging
the properties of suitable local projectors. Moreover, we establish optimal a priori error estimates for all variables that
appear in the mixed formulation. To validate our theoretical findings, we present several representative numerical
examples that also highlight the features of the proposed formulation.
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1. Introduction.

Scope. Viscoelasticity models are used to explain the macroscopic behaviour of a number of re-
alistic materials which, in addition to exhibiting an elastic strain-stress relationship in the stationary
state, show a dissipation of the kinetic energy in the dynamic state. Viscoelastic materials have various
applications in industry and medical sectors. For instance, in structural engineering, viscoelastic mate-
rials are crucial for modelling the behaviour of polymer, in biomechanics, understanding viscoelasticity
is essential for analysing the response of muscles and in materials science, viscoelastic behaviour plays a
vital role in the performance of composites and damping materials. In the one-dimensional setting, the
viscoelastic behaviour can be represented in a rheological manner by a setup of springs and dashpots
in serial or parallel. For the specific case of the standard linear model, the rheology has a parallel
coupling of one Maxwell component and one spring. Several comprehensive studies and investigation
of applications of viscoelastic materials can be found in [17,28,30,42]. Considering wide applications of
viscoelasticity, one needs to seek efficient numerical techniques that would provide desirable numerical
solution of the viscoelastic model problems. Moreover, numerical approximations of linear viscoelas-
ticity play a crucial role in understanding and predicting the behaviour of viscoelastic materials under
various loading conditions. For the numerical simulation and analysis of a variety of formulations for
the viscoelasticity problem we refer to, e.g., [9, 24,33,36–40] as well as the references therein.

In this paper, we explore the employability of virtual element methods (VEMs) – a relatively recent
numerical technique for solving partial differential equations, evolved from 0-Cochains mimetic finite
difference and H1-conforming finite element methods. VEMs have the flexibility of handling distorted
elements (with very high aspect ratio), hanging nodes, polytopal meshes with non-convex shapes. One
of the attractive features of the VEM is that bilinear forms can be directly computed using degrees
of freedom defined for the local virtual spaces, without requiring the explicit construction of basis
functions for the discrete spaces used in the approximation. The virtual spaces contain polynomial
and non-polynomial functions, and non-polynomial functions can be computed with the help of local
projection operators that are defined from the virtual space to polynomial spaces. Considering the
computational advantages of VEMs, these methods have been employed to wide range of problems in
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2 VIRTUAL ELEMENT METHODS FOR FOUR-FIELD VISCOELASTICITY

mechanics and fluid dynamics. The literature of VEMs for structural mechanics is very abundant, see
for example primal, hybrid, discontinuous, adaptive and other variants in [1,3,5,10,12,16,19,22,25,41,
44] and the references therein. In particular, VEMs for linear elasticity with weakly symmetric stress
have been recently advanced in [46] and later extended to elastodynamics in [13, 47]. Also, a mixed
formulation using pseudo-stress and displacement is found in [18]. In addition, formulations based on
the Hellinger–Reissner variational principle and imposing strong symmetry include [6, 7, 23].

Mixed finite element formulations are often preferred over standard primary formulations for the
simultaneous numerical approximation of displacement and pressure variables, which arise in various
mathematical models in engineering and physics. One advantage is their natural robustness with
respect to material parameters (and in particular producing solutions that are locking-free, that is,
even in regimes of large mechanical parameters the compliance tensor is coercive with a uniformly
bounded coercivity constant). Building on the concepts of mixed finite element methods and the
flexibility of polygonal meshes, the authors in [11, 15] introduced mixed VEMs and these methods
have been subsequently applied to more realistic problems. We here focus on the construction and
analysis of mixed VEM for viscoelasticity in its total stress (additively formed from purely elastic stress
and internal viscoelastic stress), velocity, and rotation tensor formulation. The FEM counterpart of
such formulations has been studied in [31, 38] using mixed schemes for Maxwell, Kelvin–Voigt, and
standard linear solid models with either quasi-static equilibrium equation or fully hyperbolic systems
(see also [27, 32] for slightly different formulations splitting the stress into Maxwell and fully elastic
components, eliminating the displacement, and using Newmark trapezoidal rule, [34] for DG schemes
tailored for a modified Zener model, and [43] for a multipoint stress mixed method that leads to reduced
algebraic systems). Meshes with polygons with arbitrary number of sides can be easily handled using
VEM and such meshes are suitable for some particular applications like the simulation of epithelial cells
which are inherently polygons. For further applications of virtual elements in viscoelasticity-related
computations, see [4, 8, 29,35,45].

The primary goal of this paper is to introduce a virtual element discretisation combined with
a Crank–Nicolson scheme and evaluate its computational performance for the standard linear solid
model of viscoelasticity. The virtual element spaces we employ for the stress variables are the H(div)-
conforming spaces introduced in [11]. We introduce a projection operator for the variables in the
weakly symmetric formulation to facilitate the analysis and demonstrate its approximation properties.

Outline. The remainder of this work is organised as follows. The precise form of the governing
equations in primal and mixed form is presented in Section 2, including the corresponding variational
formulations. The definition of the proposed VEM in mixed form is given in Section 3, also addressing
the properties of the bilinear forms, the definition of the virtual spaces, and specification of degrees
of freedom. There we also show the well-posedness of the semi-discrete (continuous in time) problem.
Next, Section 4 contains the derivation of a priori error estimates in the L2-norm, Section 5 contains the
fully-discretised problem using Crank–Nicolson’s method, along with error estimates, and we conclude
in Section 6 with some simple illustrative two-dimensional numerical results on polygonal meshes.

2. Mixed elastodynamics and viscoelasticity equations.

2.1. Preliminaries. Let us consider a simply connected bounded and Lipschitz domain Ω ⊂
R2, occupied by a linearly viscoelastic body. The domain boundary ∂Ω is partitioned into disjoint
sub-boundaries where homogeneous displacement and traction-type boundary conditions are imposed
∂Ω := Γu ∪ Γσ, and it is assumed for sake of simplicity that both sub-boundaries are non-empty
|Γu| · |Γσ| > 0. Throughout the text, given a normed space S, by S and S we will denote the vector and
tensor extensions Sd and Sd×d, respectively. Next, we recall the definition of the tensor-valued Hilbert
spaces H(div,Ω) =

{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
, H(curl,Ω) =

{
τ ∈ L2(Ω) : curl τ ∈ L2(Ω)

}
, with

their usual norms ‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω, ‖τ‖
2
curl,Ω := ‖τ‖20,Ω + ‖curl τ‖20,Ω, where the

divergence acts on the rows of τ , and the curl of a tensor is here understood as the tensor formed by
the curl of the rows of τ . We also define the following tensor spaces

H?(div,Ω) := {τ ∈ H(div,Ω) : τn = 0 on Γσ}, L2
skew(Ω) := {η ∈ L2(Ω) : η = −ηt}, (2.1)

where n is a unit outward normal to the boundary and (·)t denotes the matrix transpose. Next we
recall the notation regarding function spaces defined on a bounded time interval [0, T ] and with values
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in a separable Hilbert space S, with norm ‖·‖S . For a nonnegative integer m, and for 1 ≤ p <∞, we
denote by Lp(S) and Wm,p(S) the spaces of classes of functions f : [0, T ]→ S for which

‖f(t)‖pLp(S) :=

∫ T

0

‖f‖pS dt <∞ and ‖f(t)‖pWm,p(S) :=

m∑
l=0

∥∥∂lu/∂tl∥∥p
Lp(S)

<∞.

We also use the space Cm([0, T ], S) of m−times continuously differentiable functions. For brevity we
write ḟ and f̈ to denote ∂f/∂t and ∂2f/∂t2, respectively. Finally, for 1 ≤ p ≤ ∞ we consider the
Sobolev space

W 1,p(0, T ;V ) :=

{
f : ∃g ∈ Lp([0, T ], V ) and ∃f0 ∈ V such that f(t) = f0 +

∫ t

0

g(s) ds ∀t ∈ [0, T ]

}
,

and define the space W k,p(0, T ;V ) recursively for all k ∈ N.

2.2. Model problems. For a sufficiently smooth load f(t) : Ω → R2 we start with the elasto-
dynamic equations with weakly symmetric stress imposition. They consist in finding, for each time
t ∈ (0, T ], the Cauchy stress tensor, the displacement vector, and the rotation tensor σ(t),u(t), r(t)
such that

A1 σ = ε(u) = ∇u− r in Ω× (0, T ], (2.2a)
%ü− divσ = %f in Ω× (0, T ], (2.2b)

σ = σt in Ω× (0, T ], (2.2c)
u = 0 on Γu × (0, T ], (2.2d)
σn = 0 on Γσ × (0, T ], (2.2e)

(stating the constitutive relation, the balance of linear momentum, the balance of angular momentum,
and the mixed-loading boundary conditions of homogeneous type, respectively) where ε(u) = 1

2 (∇u+
(∇u)t) is the infinitesimal strain tensor, r = 1

2 (∇u − (∇u)t) is the tensor of rotations, and % is the
mass density of the solid.

The material properties are described at each point by the compliance tensor (the inverse of the
fourth-order linear isotropic stiffness tensor C1) A1, which is identified as a symmetric, bounded, and
uniformly positive definite linear operator characterised by its action

C1ε(u) = 2µ1ε(u) + λ1(divu)I, A1 σ =
1

2µ1

(
σ − λ1

2µ1 + dλ1
tr(σ)I

)
, (2.3)

where λ1, µ1 are the Lamé parameters of Hooke’s law. A stress-velocity formulation might present
analysis-related advantages over more classical stress-displacement approaches, including a more str-
aightforward treatment of dynamic effects [33]. Compatibility relations are written in terms of strain
and velocity v(t) := u̇(t) in problem (2.2). Using the boundary conditions and the definition of
the function spaces in (2.1), it is possible to write the following weak formulation: find (σ,v,γ) ∈
C0([0, T ],H?(div,Ω)) ∩ C1([0, T ],L2(Ω))× C1([0, T ],L2(Ω))× C1([0, T ],L2

skew(Ω)) such that

(A1σ̇, τ )0,Ω + (div τ ,v)0,Ω + (γ̇, τ )0,Ω = 0 ∀ τ ∈ H?(div,Ω),

(%v̇,w)0,Ω − (divσ,w)0,Ω = (%f ,w)0,Ω ∀ w ∈ L2(Ω),

(σ̇,η)0,Ω = 0 ∀η ∈ L2
skew(Ω),

with given initial data

(σ(0),v(0),γ(0)) = (C1ε(u(0)),v(0),
1

2
(∇u(0)− (∇u(0))t).

If f ∈ W 1,1([0, T ],L2(Ω)) then this problem is well-posed, as established in [2, Theorem 3.1] (see
also [26]).

As in [31] we now extend (2.2) to a standard linear solid (or Zener) rheological model for viscoelastic
materials (a parallel phenomenological model considering the coupling between one Maxwell component
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C0 C′

C1

Fig. 2.1. Schematic representation of the rheology for the classical Zener (or standard linear solid) model in
viscoelasticity. C0, C1 are the elasticity tensors associated with the first and second spring units, respectively, while C′
is the tensor associated with the dashpot.

conformed by one spring and one dashpot in serial, and one spring). Apart from the compliance tensor
A1 (cf. (2.3)) associated with the second spring unit, let A0,A′0 denote the compliance tensors of
the spring and dashpot components in the Maxwell compartment (see Figure 2.1). For the sake of
simplicity we assume that A0,A′0 are also of Hooke’s type but associated with different Lamé pairs
(µ0, λ0) and (µ′0, λ

′
0), respectively.

Then, the governing equations are written in terms of the total Cauchy stress tensor σ0(t) +σ1(t),
the velocity vector v(t), and the rotation tensor r(t) as follows

A0 σ̇0 +A′0σ0 = A1σ̇1 = ε(v) = ∇v − ṙ in Ω× (0, T ], (2.4a)
%v̇ − div(σ0 + σ1) = %f in Ω× (0, T ], (2.4b)

σ0 + σ1 = (σ0 + σ1)t in Ω× (0, T ], (2.4c)
v = 0 on Γu × (0, T ], (2.4d)

(σ0 + σ1)n = 0 on Γσ × (0, T ], (2.4e)

and they are equipped with the following initial data v(0) = 0, σ0(0) = σ00∈ H?(div,Ω), σ1(0) =
σ10∈ H?(div,Ω). In weak form, this problem reads: find (σ0,σ1,v, r) : (0, T ] → H?(div,Ω) ×
H?(div,Ω)× L2(Ω)× L2

skew(Ω) such that

(A0 σ̇0 +A′0σ0, τ 0)0,Ω + (div τ 0,v)0,Ω + (ṙ, τ 0)0,Ω = 0 ∀τ 0 ∈ H?(div,Ω), (2.5a)
(A1σ1, τ 1)0,Ω + (div τ 1,v)0,Ω + (ṙ, τ 1)0,Ω = 0 ∀τ 1 ∈ H?(div,Ω), (2.5b)

(%v̇,w)0,Ω − (div(σ0 + σ1),w)0,Ω = (%f ,w)0,Ω ∀w ∈ L2(Ω), (2.5c)

(σ̇0 + σ̇1,η)0,Ω = 0 ∀η ∈ L2
skew(Ω). (2.5d)

The existence of a unique solution to (2.5) (in the case of pure velocity boundary conditions and for
f ∈ L1([0, T ],L2(Ω)) has been proven in [31] using the theory of semigroups.

3. Virtual element discretisation.

3.1. Preliminaries, virtual spaces and degrees of freedom. Let Th denote a family of
polygonal meshes on Ω (from now on, assumed a polygonal domain) and denote by Eh the set of all
edges in the mesh. By hK we denote the diameter of the polygon K and by hF we denote the length
of the edge F . As usual, by h we denote the maximum of the diameters of elements in Th. For all
meshes we make the following assumptions.

• There exists a uniform positive constant η1 such that each element K is star-shaped with
respect to a ball of radius greater than η1hK .
• There exists η2 > 0 such that for each element and every edge F ∈ ∂K, we have that hF ≥
η2hK .

Throughout the paper, given two quantities a and b, we write a . b when there exists a constant C,
independent of the mesh-size h, such that a ≤ Cb. By Pk(Θ) we will denote the space of polynomials
of total degree at most k defined locally on the domain Θ, and denote by Pk(Θ) and Pk(Θ) the vector
and tensor counterparts, respectively.
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Consider an arbitrary polynomial degree k ≥ 1. Following [18,46,47], for each K ∈ Th we introduce
the local virtual space

S(K) := {τ ∈ H(div,K) ∩H(curl,K) :

τn|F ∈ Pk(F ) ∀F ∈ ∂K, div τ |K ∈ Pk(K), curl τ |K ∈ Pk−1(K)}, (3.1)

where by convention, P−1(K) = {0}, and a unisolvent set of local degrees of freedom describing
functions in S(K) is given by the so-called K-moments (see, e.g., [18], or also [11] for the case of mixed
Poisson)∫

F

τn ·wk ds for all edges F ∈ ∂K, and for all wk ∈ Pk(F ),∫
K

τ : gk−1 dx for all gk−1 ∈ GGk−1(K),∫
K

τ : g⊥k dx for all g⊥k ∈ GG⊥k (K),

where we denote by GGk(K) := ∇Pk+1(K) the local space of gradients of vector polynomials of degree
up to k + 1, and GG⊥k (K) denotes its orthogonal (with respect to the L2(K)-norm) in the tensor
polynomial space Pk(K).

The local spaces (3.1) can be patched together to construct the global virtual space for stresses

Sh := {τ ∈ S := H?(div,Ω) : τ |K ∈ S(K), ∀K ∈ Th},

(containing the imposition of the traction boundary condition in an essential manner), while for velocity
and rotation we consider the discrete spaces

Vh := {v ∈ V := L2(Ω) : v|K ∈ Pk(K), ∀K ∈ Th},
Kh := {η ∈ K := L2

skew(Ω) : η|K ∈ Pk(K), ∀K ∈ Th},

respectively.

Since the stresses belong to a virtual space which contains non-polynomial functions, the stress-
stress bilinear forms cannot be computed explicitly. Therefore, we introduce appropriate projection
operators that allow us to define fully computable discrete variational formulations. By Π0

k we denote
the usual L2(Ω)→ Pk(Th) orthogonal projection and Π0

k,Π
0

k will denote the extensions to the vector
and tensor cases. By Π

i

k we will denote the interpolation operator from the space

H1
h(Ω) := {τ ∈ H(div,Ω) : τ |K ∈ H1(K) ∀K ∈ Th},

into Sh, which, in view of the K-moments above, is characterised by the following identities (see,
e.g., [11])

0 =

∫
F

(τ −Π
i

kτ )n ·wk ds ∀wk ∈ Pk(F ),

0 =

∫
K

(τ −Π
i

kτ ) : gk−1 dx ∀gk−1 ∈ GGk−1(K),

0 =

∫
K

(τ −Π
i

kτ ) : g⊥k dx ∀g⊥k ∈ GG⊥k (K).

These properties imply the commutativity relation

div(Π
i

kτ ) = Π0
k(div τ ). (3.2)

Also, the spaces satisfy the following inf-sup condition, as proved in [46, Eq. (4.17)].

inf
wh∈Vh,ηh∈Kh

sup
τh∈Sh

(div τh,wh)0,Ω + (τh,ηh)0,Ω

‖τh‖(‖wh‖+ ‖ηh‖)
≥ CI > 0. (3.3)
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Fig. 3.1. Schematics of the local degrees of freedom for each row of the stress variable, focusing on polynomial
degree k = 2.

3.2. Semi-discrete formulation and its well-posedness. The semi-discrete problem reads
as follows: starting from the initial datum (σ0,h(0),σ1,h(0),vh(0), rh(0)) ∈ Sh × Sh ×Vh × Kh, find
(σ0,h,σ1,h,vh, rh) ∈ C1([0, T ],Sh)× C1([0, T ],Sh)× C1([0, T ],Vh)× C1([0, T ],Kh) such that

a0,h(σ̇0,h, τ 0,h) + a′0,h(σ0,h, τ 0,h) + (div τ 0,h,vh)0,Ω + (τ 0,h, ṙh)0,Ω = 0 ∀τ 0,h ∈ Sh, (3.4a)

a1,h(σ̇1,h, τ 1,h) + (div τ 1,h,vh)0,Ω + (τ 1,h, ṙh)0,Ω = 0 ∀τ 1,h ∈ Sh, (3.4b)
(%v̇h,wh)0,Ω − (div(σ0,h + σ1,h),wh)0,Ω − (%f ,wh)0,Ω = 0 ∀wh ∈ Vh, (3.4c)

(σ̇0,h + σ̇1,h,ηh)0,Ω = 0 ∀ηh ∈ Kh, (3.4d)

where a∗,h(σh, τh) =
∑
K∈Th a

K
∗,h(σh, τh), and thanks to the model assumptions adopted in the

previous section, the local bilinear forms are defined as

aK∗,h(σ∗h, τ ∗,h) :=
1

2µ∗

∫
K

Π
0

kσ∗,h : Π
0

kτ ∗,h dx − λ∗

2µ∗ + dλ∗

∫
K

tr(Π
0

kσ∗,h) tr(Π
0

kτ ∗,h) dx

+ SKh (σ∗,h −Π
0

kσ∗,h, τ ∗,h −Π
0

kτ ∗,h),

where ∗ specifies which compartment of the rheological model and which parameter set the bilinear
form is describing, and where SKh is defined as follows:

SKh (σ∗,h, τ ∗,h) =
∑
i

χi(σ∗,h)χi(τ ∗,h),

where χi are the degree of freedom operators introduced in Section 3.1. Clearly, SKh is positive definite
and symmetric, and satisfies the following scaling property (see [11])

α1‖τ ∗,h −Π
0

kτ ∗,h‖20,K ≤ SKh (σ∗,h −Π
0

kσ∗,h, τ ∗,h −Π
0

kτ ∗,h) ≤ α2‖τ ∗,h −Π
0

kτ ∗,h‖20,K ,

with α1, α2 positive constants independent of h, of K, and of λ∗. The bilinear forms aK∗,h thus defined
satisfy the following properties:

aK∗,h(τh,σh) ≤ C‖τh‖0,K‖σh‖0,K ∀τh,σh ∈ S,
aK∗,h(τh, τh) ≥ C‖τh‖20,K ∀τh ∈ S.

The semi-discrete formulation (3.4) can be expressed as a system of linear ordinary differential
equations in time, for which existence and uniqueness results are well established in the literature.
Therefore, we do not provide a detailed proof, but instead, below we offer a brief outline of the
argument.

We proceed by writing the sem-discrete problem in terms of operators. Let A∗ : Sh → Sh be
defined by A∗σh = RSh(a∗,h(σh, •)) where RSh : S′h → Sh gives the Riesz-representation of the
operand. Similarly, we define H : Sh → Kh as Hσh = RKh

(σh, •)0,Ω, M : Vh → Vh as Muh = %uh,
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J : Sh → Vh as Jσh = RVh
(divσh, •)0,Ω and F = RVh

(%f, •). Finally, let us define the block
operators

A =


A0 0 0 H∗

0 A1 0 H∗

0 0 M 0
H H 0 0

 , B =


−A′0 0 −J∗ 0

0 0 −J∗ 0
J J 0 0
0 0 0 0

 , C =


0
0
F
0

 .
With this, it readily follows that system (3.4) reads

A ~̇xh = B~xh + C , with ~xh = (σ0,h,σ1,h,vh, rh)t. (3.5)

Note that, if we prove that A is invertible, we can write the system as ~̇xh = F (~xh, t) where F is
continuous in t and Lipschitz-continuous in ~xh. Thus, by Cauchy–Picard’s theorem (see, e.g., [21,
Chapter 2]), we will have a unique solution of the semi-discrete problem in [0, T ].

On the other hand, from the fact that aK∗,h and (., .)0,Ω are coercive and symmetric on Sh and Kh
respectively, we get that A0, A1 and M are positive definite. Thus, to prove the invertibility of A , we
only need to show that H∗ is injective.

Suppose that for some ηh ∈ Kh, H∗ηh = 0. Then, for any τh ∈ Sh, we have that

0 = (τh, H
∗ηh)0,Ω = (Hτh,ηh)0,Ω = (τh,ηh)0,Ω.

As this is true for all τh ∈ S, we readily get the following relation by using (3.3).

0 = sup
τh∈Sh

(τh,ηh)0,Ω

‖τh‖
≥ CI‖ηh‖.

This is only possible if ‖ηh‖ = 0, that is ηh = 0. As ηh was any generic element of Kh satisfying
H∗ηh = 0, we get that H∗ is injective, thus proving the invertibility of A .

We also prove the following stability result.

Theorem 3.1. The solution of the semi-discrete system (3.4) satisfies the following estimate

max
s∈[0,T ]

(‖σ0,h(s)‖+ ‖σ1,h(s)‖+ ‖vh(s)‖) . ‖σ0,h(0)‖+ ‖σ1,h(0)‖+ ‖vh(0)‖+

∫ T

0

‖f(s)‖ds .

Proof. Substituting τ 0,h = σ0,h, τ 1,h = σ1,h, wh = vh and wh = vh in the first three equations of
(3.4) and adding them all, we get the following.

1

2

d
dt

(a0,h(σ0,h,σ0,h) + a1,h(σ1,h,σ1,h) + (%vh,vh)) + a′0,h(σ0,h,σ0,h) = (%f ,vh)− (σ0,h + σ1,h, ṙh).

The term (σ0,h + σ1,h, ṙh) is zero owing to both (σ0,h(0) + σ1,h(0),ηh) and (σ̇0,h + σ̇1,h,ηh) being
zero for all ηh ∈ Kh. Thus, we are left with the following relation

1

2

d
dt

(a0,h(σ0,h,σ0,h) + a1,h(σ1,h,σ1,h) + (%vh,vh)) + a′0,h(σ0,h,σ0,h) = (%f ,vh). (3.6)

Next we apply the continuity of the bilinear forms and Cauchy–Schwarz’s inequality to get the following
bound

d
dt
(
‖σ0,h‖2 + ‖σ1,h‖2 + ‖vh‖2

)
+ ‖σ0,h‖2 ≤ C‖f‖‖vh‖. (3.7)

Then, discarding the positive term ‖σ0,h‖2 and integrating in time from 0 to t for t < T , we readily
get the estimate

‖σ0,h(t)‖2 + ‖σ1,h(t)‖2 + ‖vh(t)‖2

≤ ‖σ0,h(0)‖2 + ‖σ1,h(0)‖2 + ‖vh(0)‖2 + C

∫ t

0

‖f(s)‖‖vh(s)‖ds .

Further, using standard inequalities, it is possible to obtain

(‖σ0,h(t)‖+ ‖σ1,h(t)‖+ ‖vh(t)‖)2
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≤ C
(

(‖σ0,h(0)‖+ ‖σ1,h(0)‖+ ‖vh(0)‖)2 +

∫ T

0

‖f(s)‖‖vh(s)‖ds
)

≤ C
(

(‖σ0,h(0)‖+ ‖σ1,h(0)‖+ ‖vh(0)‖)2 + max
s∈[0,T ]

‖vh(s)‖
∫ t

0

‖f(s)‖ds
)

≤ C
(

(‖σ0,h(0)‖+ ‖σ1,h(0)‖+ ‖vh(0)‖)2 + max
s∈[0,T ]

(‖σ0,h(s)‖+ ‖σ1,h(s)‖+ ‖vh(s)‖)
∫ t

0

‖f(s)‖ds
)
.

And finally, dividing both sides by maxs∈[0,T ](‖σ0,h(s)‖+ ‖σ1,h(s)‖+ ‖vh(s)‖), we end up with

max
s∈[0,T ]

(‖σ0,h(s)‖+ ‖σ1,h(s)‖+ ‖vh(s)‖)

≤ C
(
‖σ0,h(0)‖+ ‖σ1,h(0)‖+ ‖vh(0)‖+

∫ T

0

‖f(s)‖ds
)
.

Remark 3.1. Equation (3.6), shows the dissipation of the total energy consisting of the kinetic and
elastic potential energy for the viscoelastic material. Specifically, when the load term is zero, it shows
that the energy decays to zero with time.

4. Error analysis. In this section we aim at the derivation of optimal a priori error estimates
for the solutions of the semi-discrete problem (3.4) in their natural norms.

To that end, we first define a weakly symmetric elliptic projection operator Π̃ : S × S ×V × K →
Sh × Sh ×Vh ×Kh which maps (σ0,σ1,u, r) to (σ0,π,σ1,π,uπ, rπ) where the latter is the solution of
the following equations

(σ0,π − σ0, τ 0,h)0,Ω + (div τ 0,h,uπ − u)0,Ω + (τ 0,h, rπ − r)0,Ω = 0 ∀τ 0,h ∈ Sh, (4.1a)
(σ1,π − σ1, τ 1,h)0,Ω + (div τ 1,h,uπ − u)0,Ω + (τ 1,h, rπ − r)0,Ω = 0 ∀τ 1,h ∈ Sh, (4.1b)

(div(σ0,π + σ1,π − σ0 − σ1),wh)0,Ω = 0 ∀wh ∈ Vh, (4.1c)
(σ0,π + σ1,π − σ0 − σ1,ηh)0,Ω = 0 ∀ηh ∈ Kh. (4.1d)

The operator Π̃ is well-defined due to the following lemma.

Lemma 4.1. The problem (4.1) is well posed.

Proof. We want to show that given any (σ0,σ1,u, r) ∈ S×S×V×K, there exists a unique solution
to (4.1). As Sh×Sh×Vh×Kh is finite dimensional, the square system of linear equations has a unique
solution if the following system of equations possesses only the zero solution.

(σ0,π, τ 0,h)0,Ω + (div τ 0,h,uπ)0,Ω + (τ 0,h, rπ)0,Ω = 0 ∀τ 0,h ∈ Sh,
(σ1,π, τ 1,h)0,Ω + (div τ 1,h,uπ)0,Ω + (τ 1,h, rπ)0,Ω = 0 ∀τ 1,h ∈ Sh,

(div(σ0,π + σ1,π),wh)0,Ω = 0 ∀wh ∈ Vh,

(σ0,π + σ1,π,ηh)0,Ω = 0 ∀ηh ∈ Kh.

Substituting τ 1,h = τ 0,h in the second equation and then taking the difference of the first two equations,
we get that (σ0,π − σ1,π, τ 0,h)0,Ω = 0 ∀τ 0,h ∈ Sh, implying that σ0,π = σ1,π. Now, substituting σ1,π

by σ0,π in the equations and dividing by two, we get the following system of equations.

(σ0,π, τ 0,h)0,Ω + (div τ 0,h,uπ)0,Ω + (τ 0,h, rπ)0,Ω = 0 ∀τ 0,h ∈ Sh,
(div(σ0,π),wh)0,Ω = 0 ∀wh ∈ Vh,

(σ0,π,ηh)0,Ω = 0 ∀ηh ∈ Kh.

This is a well-posed system by [46, Theorem 4.1], hence, the kernel of the above system is zero.

Next, we establish the projection error estimates, which will be used to prove the optimal error
estimates between the exact solution and the solution of the semi-discrete problem (3.4).

Lemma 4.2. Let (σ0,σ1,u, r) ∈Wk+1,2(Ω)×Wk+1,2(Ω)×Wk+1,2(Ω)×Wk+1,2(Ω) and its projec-
tion be (σ0,π,σ1,π,uπ, rπ) = Π̃(σ0,σ1,u, r). Then, there exists C > 0 independent of h such that

‖uπ − u‖+ ‖rπ − r‖+ ‖σ0,π − σ0‖+ ‖σ1,π − σ1‖ ≤ Chk+1‖σ0,σ1,u, r‖Wk+1,2(Ω).



KUMAR, RAJPUT, RUIZ-BAIER 9

Proof. Taking τ 0,h = τ 1,h = τh in the first and second equations of (4.1), adding them, and
defining σ = 1

2 (σ0 + σ1) and σπ = 1
2 (σ0,π + σ1,π), we get the following system

(σπ − σ, τh)0,Ω + (div τh,uπ − u)0,Ω + (τh, rπ − r)0,Ω = 0 ∀τh ∈ Sh,
(div(σπ − σ),wh)0,Ω = 0 ∀wh ∈ Vh,

(σπ − σ,ηh)0,Ω = 0 ∀ηh ∈ Kh,

which clearly satisfies the conditions to apply [47, Lemma A.1], whence we get

‖uπ − u‖+ ‖rπ − r‖ ≤ Chk+1‖σ0.σ1,u, r‖k+1. (4.2)

In order to bound ‖σi,π−σi‖ for i = 0, 1, we use the triangle inequality ‖σi,π−σi‖ ≤ ‖σi,π−Π
i

kσi‖+

‖Πi

kσi − σi‖. Norm of each row of (Π
i

kσi − σi) is bounded by the H1-norm of that row according
to [11, Section 3.2]. Thus, we have

‖Πi

kσi − σi‖ ≤ Chk+1‖σi‖k+1. (4.3)

In order to derive suitable bounds on ‖σi,π −Π
i

kσi‖, we write the first and second equations of (4.1)
as follows

(dσi
+ Π

i

kσi − σi, τ i,h)0,Ω + (div τ i,h, du + Π0
ku− u)0,Ω + (τ i,h, dr + Π0

kr− r)0,Ω = 0 ∀τ i,h ∈ Sh,

where dσi
= σi,π −Π

i

kσi, du = uπ −Π0
ku, dr = rπ −Π0

kr. Taking τ i,h = dσi
in the above equation

and adding for i = 0, 1, we readily obtain

‖dσ0
‖2 + ‖dσ1

‖2 + (div(dσ0
+ dσ1

), du)0,Ω + (div(dσ0
+ dσ1

),Π0
ku− u)0,Ω

= −(Π
i

kσ0 − σ0, dσ0
)0,Ω − (Π

i

kσ1 − σ1, dσ1
)0,Ω − (dσ0

+ dσ1
, dr + Π0

kr− r)0,Ω.

The fourth term on the left-hand side in the equation above is zero by the definition of the polynomial
projection and the fact that for τ ∈ Sh, div τ ∈ Vh. In addition, the third term can be analysed as
follows

(div(dσ0
+ dσ1

), du)0,Ω

= (div(σ0,π + σ1,π − σ0 − σ1), du)0,Ω + (div(σ0 + σ1 −Π
i

kσ0 −Π
i

kσ1), du)0,Ω.

In turn, the first term of above is zero by the third equation of (4.1). By (3.2), the second term is equal
to (div(σ0 + σ1) −Π0

k div(σ0 + σ1), du)0,Ω, which is zero by definition of the projection operator,
and du being in the projected space. In all, we are left with the following relation

‖dσ0
‖2 + ‖dσ1

‖2 = −(Π
i

kσ0 − σ0, dσ0
)0,Ω − (Π

i

kσ1 − σ1, dσ1
)0,Ω − (dσ0

+ dσ1
, dr + Π0

kr− r)0,Ω

≤ C
√
‖dσ0

‖2 + ‖dσ1
‖2
(
‖Πi

kσ0 − σ0‖+ ‖Πi

kσ1 − σ1‖+ ‖dr‖+ ‖Π0
kr− r‖

)
.

Thus we have the following estimate√
‖dσ0

‖2 + ‖dσ1
‖2 ≤ C

(
‖Πi

kσ0 − σ0‖+ ‖Πi

kσ1 − σ1‖+ ‖rπ − r‖+ ‖Π0
kr− r‖

)
,

where we have also used the triangle inequality. Now the desired estimate can be obtained from this
using (4.3), (4.2) and standard polynomial approximation theory (see, e.g., [14]).

Remark 4.1. We note that the operator Π̃ defined by (4.1) commutes with differentiation in time,
that is,

d

dt
Π̃(σ0,σ1,u, r) = Π̃(σ̇0, σ̇1, u̇, ṙ).

The proof of this result is the same as in [47, Lemma 6.2], and this property is used in the subsequent
analysis.
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As a notational convenience, for any symbol ζ in {σ0,σ1,v, r} and its discrete approximation ζh
in {σ0,h,σ1,h,vh, rh}, we define the following error quantities

eζ
.
= ζ − ζh, epζ

.
= ζ − ζπ, ehζ

.
= ζπ − ζh.

We now prove the main result of this section.

Theorem 4.1. For (σ0,σ1,u, r) ∈W 1,1(0, T ;Wk+1,2(Ω)×Wk+1,2(Ω)×Wk+1,2(Ω)×Wk+1,2(Ω)),
the solution (σ0,h,σ1,h,vh, rh) of (3.4) satisfies the following estimate for all time t, where the constant
C is independent of h or t:

‖vh − v‖+ ‖rh − r‖+ ‖σ0,h − σ0‖+ ‖σ1,h − σ1‖ ≤ Chk+1‖σ0,σ1,v‖W 1,1(0,T ;Wk+1,2(Ω)).

Proof. Subtracting the corresponding continuous and semi-discrete equations, we get the following
system with vπ = u̇π:

a0(σ̇0, τ 0,h)− a0,h(σ̇0,h, τ 0,h) + a′0(σ0, τ 0,h)− a′0,h(σ0,h, τ 0,h) (4.4a)

+(div τ 0,h, ev)0,Ω + (τ 0,h, ėr)0,Ω = 0 ∀τ 0,h ∈ Sh, (4.4b)
a1(σ̇1, τ 1,h)− a1,h(σ̇1,h, τ 1,h) + (div τ 1,h, ev)0,Ω + (τ 1,h, ėr)0,Ω = 0 ∀τ 1,h ∈ Sh, (4.4c)

(%ėv,wh)0,Ω − (div(eσ0 + eσ1),wh)0,Ω = 0 ∀wh ∈ Vh, (4.4d)
(ėσ0 + ėσ1 ,ηh)0,Ω = 0 ∀ηh ∈ Kh. (4.4e)

Substituting τ 0,h = ehσ0
, τ 1,h = ehσ1

and wh = ehv in the first, second and third equations respec-
tively, and adding them, we get the following relation

a0,h(ėhσ0
, ehσ0

) + a′0,h(ehσ0
, ehσ0

) + a1,h(ėhσ1
, ehσ1

) + (%ėhv, e
h
v)0,Ω

= −(%ėpv, e
h
v)0,Ω + (ėpσ0

, ehσ0
)0,Ω + (ėpσ1

, ehσ1
)0,Ω

− a′0(σ0, e
h
σ0

) + a′0,h(σ0,π, e
h
σ0

)− a0(σ̇0, e
h
σ0

) + a0,h(σ̇0,π, e
h
σ0

)− a1(σ̇1, e
h
σ1

) + a1,h(σ̇1,π, e
h
σ1

),

where we have also considered that σ∗,σ∗,h ⊥ Kh. Then we proceed to rewrite the result in its energy
form, leading to

1

2

d
dt

(
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2%
)

+ ‖ehσ0
‖2A′0,h

=− (%ėpv, e
h
v)0,Ω + (ėpσ0

, ehσ0
)0,Ω + (ėpσ1

, ehσ1
)0,Ω − a′0,h(epσ0

, ehσ0
)− (a′0(σ0, e

h
σ0

)− a′0,h(σ0, e
h
σ0

))

− a0,h(ėpσ0
, ehσ0

)− (a0(σ̇0, e
h
σ0

)− a0,h(σ̇0, e
h
σ0

))− a1,h(ėpσ1
, ehσ1

)− (a1(σ̇1, e
h
σ1

)− a1,h(σ̇1, e
h
σ1

)).

Now, using the definition of the discrete bilinear forms and their stability property, we can apply
Cauchy–Schwarz’s inequality to each term on the right-hand side, to readily get the following

1

2

d
dt

(
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2%
)

+ ‖ehσ0
‖2A′0,h

≤C(‖ėpv‖‖ehv‖+ ‖ėpσ0
‖‖ehσ0

‖+ ‖ėpσ1
‖‖ehσ1

‖+ ‖epσ0
‖‖ehσ0

‖+ ‖Π0

kσ0 − σ0‖‖ehσ0
‖

+ ‖ėpσ0
‖‖ehσ0

‖+ ‖Π0

kσ̇0 − σ̇0‖‖ehσ0
‖+ ‖ėpσ1

‖‖ehσ1
‖+ ‖Π0

kσ̇1 − σ̇1‖‖ehσ1
‖).

Next, applying algebraic relations to the norms on the right-hand side of the above inequality, it is not
difficult to arrive at the following estimate

1

2

d
dt

(
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2%
)

+ ‖ehσ0
‖2A′0,h

≤C‖ėpσ0
, epσ0

, ėpσ1
, ėpv,Π

0

kσ̇0 − σ̇0,Π
0

kσ0 − σ0,Π
0

kσ̇1 − σ̇1‖
√
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2%.

Dividing both sides by
√
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2% and integrating in time, we are left with

√
‖ehσ0
‖2A0,h

+ ‖ehσ1
‖2A1,h

+ ‖ehv‖2% ≤ C
∫ t

0

‖ėpσ0
, epσ0

, ėpσ1
, ėpv,Π

0

kσ̇0 − σ̇0,Π
0

kσ0 − σ0,Π
0

kσ̇1 − σ̇1‖ dt.
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Again, by the commutativity of Π̃ with differentiation in time, we have, for any symbol ζ in {σ0,σ1,v},
that ėpζ = ep

ζ̇
. Thus, from Lemma 4.2 and standard polynomial approximation theory, it is clear that

the right-hand side of this last inequality is bounded by Chk+1‖σ0,σ1,v‖W 1,1(0,T ;Wk+1,2(Ω)). Again,
an application of the triangle inequality and Lemma 4.2 gives us the desired estimate.

Note that by differentiating equations (4.4) in time multiple times, and repeating the steps in the
proof above, we can prove that the following holds for all time t and for all l ∈ {0, 1, ...}, with Dl being
the l-times differentiation operator

‖Dlvh −Dlv‖+ ‖Dlrh −Dlr‖+ ‖Dlσ0,h −Dlσ0‖+ ‖Dlσ1,h −Dlσ1‖
≤ Chk+1‖σ0,σ1,v‖W l+1,1(0,T ;Wk+1,2(Ω)).

(4.5)

We also prove a result about error in divergence of the total viscoelastic stress.

Theorem 4.2. The semi-discrete solution satisfies the following error bound for all time t ∈ [0, T ]:

‖div(σ0,h + σ1,h − σ0 − σ1)‖ ≤ Chk+1‖σ0,σ1,v‖W 2,1(0,T ;L2(Ω)). (4.6)

Proof. Let σ = σ0 + σ1 and σh = σ0,h + σ1,h. By the third equations of (2.5) and (3.4), we get
the following relation for all wh ∈ Vh

(%(v̇ − v̇h),wh) = (divσ − divσh,wh) = (Π0
k divσ − divσh,wh).

Taking wh = Π0
k divσ − divσh, we can assert that

‖Π0
k divσ − divσh‖2 = (%(v̇ − v̇h),Π0

k divσ − divσh) ≤ ‖%(v̇ − v̇h)‖‖Π0
k divσ − divσh‖.

Dividing both sides by ‖Π0
k divσ − divσh‖, we readily obtain

‖Π0
k divσ − divσh‖ ≤ ‖%(v̇ − v̇h)‖.

Finally, owing to triangle inequality, polynomial approximation theory and (4.5), we get (4.6).

5. Fully discrete formulation. We proceed to discretise the time derivative by employing the
absolutely stable Crank–Nicolson scheme. This yields a fully discrete version of the semi-discrete
scheme (3.4). For that purpose we choose a positive integer N for the number of divisions of the time
interval. Let tn = nτ , where n = 0, 1

2 , 1,
3
2 , 2, · · ·N .

Take ~x = (σ0,σ1,v, r)t, and following (3.5), the semi-discrete system is represented as ~xh =

(σ0,h,σ1,h,vh, rh)t satisfying A ~̇xh = B~xh+C for t ∈ [0, T ]. We use the notation ~xn and ~xnh to denote
~x(tn) and ~xh(tn) respectively. The fully discrete scheme is to find ~Xn ' ~xnh for all n ∈ {1, 2, ..., N}
such that,

A
~Xn − ~Xn−1

τ
= B

~Xn + ~Xn−1

2
+ C

((
n− 1

2

)
τ

)
. (5.1)

Now, we state and prove the result concerning the time-discretisation error.

Lemma 5.1. The solution of the fully discrete problem satisfies the following error bound, where the
constant c is independent of h or τ :

max
n∈{0,1,...,N}

‖ ~Xn − ~xnh‖ ≤ cτ2‖σ0,σ1,v, r‖W 3,∞(0,T ;L2(Ω)). (5.2)

Proof. Denoting ~Xn − ~xnh by ~δn, we readily obtain

A
~δn − ~δn−1

τ
−B

~δn + ~δn−1

2

= A

(
~xnh − ~xn−1

h

τ
− ~̇xn−

1
2

h

)
−B

(
~xnh + ~xn−1

h

2
− ~xn−

1
2

h

)
.

(5.3)
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Next, we use the following relation

∥∥∥∥~xnh + ~xn−1
h

2
− ~xn−

1
2

h

∥∥∥∥ =

∥∥∥∥∥∥
∫ tn

t
n− 1

2

~̇xh(s)ds−
∫ t

n− 1
2

tn−1

~̇xh(s)ds

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ tn

t
n− 1

2

∫ s

t
n− 1

2

~̈xh(t)dt ds+

∫ t
n− 1

2

tn−1

∫ t
n− 1

2

s

~̈xh(t)dt ds

∥∥∥∥∥∥
≤ τ2‖~̈xh‖L∞(0,T ;L2(Ω)).

(5.4)

And in order to bound the other term, we consider the following∥∥∥∥~xnh − ~xn−1
h

τ
− ~̇xn−

1
2

h

∥∥∥∥
=

1

τ

∥∥∥∥∥∥
∫ tn

t
n− 1

2

∫ s

t
n− 1

2

∫ t

t
n− 1

2

...
~x h(r)dr dt ds+

∫ t
n− 1

2

tn−1

∫ t
n− 1

2

s

∫ t
n− 1

2

t

...
~x h(r)dr dt ds

∥∥∥∥∥∥
≤ τ2‖

...
~x h‖L∞(0,T ;L2(Ω)).

(5.5)

By the continuity of A and B (with continuity constants cA and cB respectively), the coercivity of
A with constant CA , using (5.4) and (5.5) in (5.3), and then multiplying by ~δn+~δn−1

2 , we get the
following estimate

‖~δn‖2 − ‖~δn−1‖2
τ

≤ c
(
‖~δn‖2 + ‖~δn−1‖2

2
+ τ2(‖~̈xh‖L∞(0,T ;L2(Ω)) + ‖

...
~x h‖L∞(0,T ;L2(Ω)))‖~δn + ~δn−1‖

)
,

where c = C−1
A max(1, cA , cB). Applying the discrete form of Grönwall’s inequality (see [20]), we are

left with
max

n∈{0,1,...,N}
‖ ~Xn

h − ~xnh‖ ≤ cτ2(‖~̈xh‖L∞(0,T ;L2(Ω)) + ‖
...
~x h‖L∞(0,T ;L2(Ω))).

To complete the proof, we proceed to find h-independent bounds for the quantities ‖~̈xh‖L∞(0,T ;L2(Ω))

and ‖
...
~x h‖L∞(0,T ;L2(Ω)), which we derive as follows

‖Dl~x‖L∞(0,T ;L2(Ω)) =‖Dlσ0,h,Dlσ1,h,Dlvh,Dlrh‖L∞(0,T ;L2(Ω))

≤‖Dlσ0,Dlσ1,Dlv,Dlr‖L∞(0,T ;L2(Ω))

+ C
(
‖Dlvh −Dlv‖+ ‖Dlrh −Dlr‖+ ‖Dlσ0,h −Dlσ0‖+ ‖Dlσ1,h −Dlσ1‖

)
≤‖Dlσ0,Dlσ1,Dlv,Dlr‖L∞(0,T ;L2(Ω)) + Chk+1‖σ0,σ1,v‖W l+1,1(0,T ;Wk+1,2(Ω)).

Here, in the last inequality, we have used (4.5). Now, for a sufficiently small h, the second term is
dominated by the first. Thus, we get the desired estimate.

We finally state the full-discretisation error estimate which is obtained from (5.2), Theorem 4.1,
and triangle inequality.

Theorem 5.1. Assume that the solution to (2.5) is such that σ0,σ1 ∈ W 1,1(0, T ; Wk+1,2(Ω)) ∩
W 3,∞(0, T ;L2(Ω)) and v ∈ W 1,1(0, T ; Wk+1,2(Ω)) ∩ W 3,∞(0, T ; L2(Ω)). Then, the solution ~Xn of
(5.1) satisfies the following estimate for all n ∈ {0, 1, , ..., N}

‖ ~Xn − ~xn‖ ≤ Chk+1‖σ0,σ1,v‖W 1,1(0,T ;Wk+1,2(Ω)) + cτ2‖σ0,σ1,v, r‖W 3,∞(0,T ;L2(Ω)).

6. Numerical verification.
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Fig. 6.1. Error history for the system variables in the L2-norm using the manufactured solution u(x, y, t) =
(e−y cos(t) sin(x), et+x)t, with polynomial degree k = 1 and on square meshes (a). Using the manufactured solution
u(x, y, t) = (t2x(1−x)y(1− y), 0)t with polynomial degree k = 1 and on square meshes (b), on hexagonal meshes (c) on
square meshes (d), with degree k = 2 on hexagonal meshes (e) with k = 2 on square meshes (f), with k = 3 on square
meshes (g), and with k = 3 on hexagonal meshes (h). The solid lines indicate fitted convergence rate slopes.

6.1. Preliminaries. In this section we show the results of simple computational tests that confirm
the theoretical error estimates from Section 5, and we also showcase properties of the proposed mixed
virtual element method. The implementation has been carried out using an in-house C++ code and
following the guidelines in [11,13]. The discretisation leads, at each time step, to a system of algebraic
equations and all linear solves are done with a direct method. We confine the results only to the
two-dimensional case, for which the total number of degrees of freedom are

DoFs := 2 · 2(k + 1) · ](edges in Eh) + (k + 1)(5k + 3) · ](polygons in Th).

6.2. Convergence tests. First we investigate the convergence of the method using different
smooth displacement solutions. We consider the time horizon T = 1, the spatial domain Ω = (0, 1)2,
and the following model parameters that characterise the elastic and viscous stress components of an
isotropic, homogeneous viscoelastic material µ0 = 3, λ0 = 2, µ1 = 4, λ1 = 5, µ′0 = 4, λ′0 = 3 and
% = 1. The units in this and the following examples are taken consistently with mm for length, mm/s
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Fig. 6.2. Convergence plot on the square-hexagonal partitioned mesh using the manufactured displacement solution
u(x, y, t) = (t3x(1− x)y(1− y), 0)t and polynomial degree k = 1.

for velocity, g/mm3 for density, N/mm3 for body forces, N/mm2 for tractions, stress, Young modulus
and Lamé parameters.

We use manufactured smooth displacement solutions from which we obtain the exact mixed vari-
ables and calculate the corresponding load function, initial conditions required to initialise the Crank–
Nicolson scheme, as well as boundary conditions that satisfy (2.4). The traction boundary Γσ is
composed by the segments x = 0 and y = 0 while the remainder of the boundary is Γu. We consider
partitions of the domain into a sequence of successively refined meshes of squares and hexagons (see
Figure 6.4), and compute approximate solutions using the virtual element scheme for different poly-
nomial degrees, as well as errors with respect to the manufactured smooth solution at the final time
t = T . The Crank–Nicolson time discretisation is done so as to achieve optimal convergence rate by
having τ2 ∝ hk+1. The rates of convergence in space are computed as

rate = log(e(·)/ẽ(·))[log(h/h̃)]−1,

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respectively.

The manufactured displacements we choose in the different tests are u(x, y, t) = (t2xy(1 − x)(1 −
y), 0)t, u(x, y, t) = (e−y cos(t) sin(x), et+x)t, and u(x, y, t) = (t3x(1−x)y(1−y), 0)t, for (x, y) ∈ Ω and
t ∈ [0, 1]. These functions have been selected to test the convergence in presence both homogenous and
non-homogenous boundary conditions. We observe that the convergence order of the method seems
to be robust with respect to the choice of the exact solution and polynomial degree. These results are
collected in Figure 6.1. In all plots (except panel (b) which refers to the verification of convergence of
the divergence of the total stress as stated in Theorem 4.2) we display the decay of the L2-norm of the
individual error contributions (except that for the stress components, we compute ‖Π0

kσi,h − σi‖ ),
showing in all cases the expected optimal rate of convergence O(hk+1) for all unknowns, consistently
with the theoretical bounds from Theorem 5.1. Other tests (now shown here) confirm that the method
is also robust with respect to other physical parameter values. Specifically, we followed [27] for tests
for nearly incompressible materials. As an example, keeping all other settings in the same way as
in the first test, we perform two experiments with the parameters µ0 = 3, λ0 = 1.5 × 102, µ1 = 9,
λ1 = 4.5× 102, µ′0 = 3, λ′0 = 1.5× 102 in the first additional experiment and µ0 = 3, λ0 = 1.5× 104,
µ1 = 9, λ1 = 4.5 × 104, µ′0 = 3, λ′0 = 1.5 × 104 in the second (leading to Poisson ratios of 0.49
and 0.4999, respectively). The results are portrayed in Figure 6.3, confirming a convergence rate of
approximately O(h2.5) and a slightly higher O(h2.8) for the first and second case, respectively, that
is, no degeneration of the error decay even in the nearly incompressible regime. In the later case the
magnitude of the stress errors is much closer together, and in both cases the lowest contribution to the
total error is given by the velocity.

In another experiment, we test the convergence of the method when different discretisations are
used for different portions of the domain. This introduces hanging nodes and arbitrarily small edges
relative to the element diameter (see an example of hanging nodes in Figure 6.5). The results for the
case k = 1 are shown in Figure 6.2, again indicating optimal convergence rates.
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Fig. 6.3. Convergence plots for a nearly incompressible material with Poisson’s ration 0.49 (a) and 0.4999 (b).

Fig. 6.4. Sample of coarse meshes of the two types (squares - left and hexagonal - right) employed for the
convergence tests.

6.3. Qualitative tests. As a demonstration of the viscoelastic behaviour, we plot the time-de-
pendence of the velocity in x-direction of a marker placed at the centroid of the domain at t = 0, while
a constant uniform body-force f(x, y) = (1, 1)t is applied to the material. The displacement was fixed
to zero on the entire boundary. We consider two cases. In one, the physical constants are same as in
previous experiments except that % was 1000. In another case, along with % = 1000, we choose reduced
viscosity coefficients µ′0 = 10−5 and λ′0 = 10−6. For both sets of simulations, we take T = 100 and
τ = 0.1. We can see quickly damped oscillations in the first part of Figure 6.6, which is expected due
to higher viscosity.
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Fig. 6.5. Example of the partitioned mesh-type. Hanging nodes for the left and right partitions are shown in red
and blue colour, respectively.
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Fig. 6.6. Plots of the marker velocity [mm/s] versus time [s], under constant uniform force [N/mm3]. The second
plot shows the result when µ′0 and λ′0 were changed to 10−5 and 10−6 respectively.
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