
Discontinuous finite volume element methods for
the optimal control of Brinkman equations

Sarvesh Kumar, Ricardo Ruiz-Baier, Ruchi Sandilya

Abstract We introduce and analyse a family of hybrid discretisations based on low-
est order discontinuous finite volume elements for the approximation of optimal
control problems constrained by the Brinkman equations. The classical optimise-
then-discretise approach is employed to handle the control problem leading to a
non-symmetric discrete formulation. An a priori error estimate is derived for the
control variable in the L2−norm, and we exemplify the properties of the method
with a numerical test in 3D.
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1 Introduction

The numerical solution of optimal control problems constrained by equations of
viscous incompressible flow (Stokes and Navier-Stokes problems) is encountered in
many application problems arising in science and engineering. An abundant body
of relevant literature is available, mainly in the context of finite element methods
(see e.g. [3, 6, 7, 14, 13] and the references therein). Most of these contributions
employ conforming discretisations for state, co-state and control variables, which
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typically produce O(h) convergence rates for piecewise constant approximations of
the control variables, where h is the meshsize. Here we propose a new discontinu-
ous finite volume element (DFVE) method for the discretisation of optimal control
problems constrained by the Brinkman equations. DFVE schemes are characterised
by ability of writing local conservation equations as in classical finite volume meth-
ods, and through transformation maps between primal and dual meshes, they can be
recast as discontinuous discretisations of Petrov-Galerkin type. A number of DFVE
methods have been proposed for the primal formulation of Stokes and related flow
problems in [8, 17] (see also their references). We consider the present method and
its analysis as an extension of these contributions to the case of distributed optimal
control, in combination with the ideas developed in [11, 12, 15, 16] for elliptic and
parabolic optimal control problems. While here we will derive only an L2−error
bound for the control variable and motivate our findings with an example of optimal
control in a porous cylinder, the corresponding error estimates in the energy norm
for control, state, and co-state variables, as well as numerical verification of optimal
convergence rates, will be presented in the forthcoming contribution [9].

2 The optimal control problem

Let us consider the following distributed optimal control problem

min
u∈Uad

J(u) :=
1
2
‖y−yd‖2

0,Ω +
λ

2
‖u‖2

0,Ω , (1)

governed by the linear Brinkman equations

K−1y−div(µε(y)− pI) = u+ f in Ω , (2)
divy = 0 in Ω , (3)

y = 0 on ∂Ω , (4)

where Uad is the set of feasible controls (defined for −∞≤ a j < b j ≤∞, j = 1,2,3)

Uad = {u ∈ L2(Ω) : a j ≤ u j ≤ b j a.e. in Ω}.

This model describes the motion of an incompressible viscous fluid within an array
of porous particles, where y denotes the fluid velocity, p is the pressure field, u is the
control variable, and λ > 0 is a given Tikhonov regularisation. The Cauchy stress is
µε(y)− pI, where ε(y) = 1

2 (∇y+∇yT ) is the infinitesimal rate of strain, µ = µ(x)
is the dynamic viscosity of the fluid, and K = K(x) is for the permeability tensor
of the medium (symmetric, uniformly bounded and positive definite). The desired
velocity yd and the applied body force f are known data in L2(Ω). The goal is to
identify an additional force u giving rise to a velocity y in order to match a given
target velocity yd .



DFVE methods for Brinkman optimal control 3

The standard weak formulation of the state equations (2)-(4) is given by: find
(y, p) ∈H1

0(Ω)×L2
0(Ω) such that

a(y,v)+ c(y,v)+b(v, p) = (f+u,v)0,Ω ∀v ∈H1
0(Ω),

b(y,q) = 0 ∀q ∈ L2
0(Ω),

(5)

where the bilinear forms a(·, ·) : H1
0(Ω)×H1

0(Ω)→R, c(·, ·) : H1
0(Ω)×H1

0(Ω)→
R and b(·, ·) : H1

0(Ω)×L2
0(Ω)→ R are defined as:

a(y,v) =
∫

Ω

K−1y ·vdx, c(y,v) =
∫

Ω

µε(y) : ε(v)dx, b(v,q) =−
∫

Ω

qdivvdx,

for all y,v ∈H1
0(Ω) and q ∈ L2

0(Ω). Problem (5) satisfies the Babuška-Brezzi con-
dition: there exists ξ > 0 such that

inf
q∈L2

0(Ω)
sup

06=v∈H1
0(Ω)

b(v,q)
‖v‖1,Ω ‖q‖0,Ω

≥ ξ ,

and its unique solvability is therefore ensured. As the optimal control problem (1)-
(4) is strictly convex, it admits a unique optimal solution [10], and the first order
necessary conditions are also sufficient for optimality. Moreover, the optimality con-
dition can be formulated as J′(u)(ũ−u)≥ 0 for all ũ ∈ Uad, or:

(w+λu, ũ−u)0,Ω ≥ 0 ∀ũ ∈ Uad, (6)

where w is the velocity associated to the adjoint equation

K−1w−div(µε(w)+ rI) = y−yd in Ω , (7)
divw = 0 in Ω , (8)

w = 0 on ∂Ω . (9)

The variational inequality (6) can be equivalently recast as

u j(x) = P[a j ,b j ]

(−1
λ

w j(x)
)

a.e. in Ω , j = 1,2,3,

where P denotes a projection defined for a generic scalar function f as

P[a,b]( f (x)) = max(a,min(b, f (x))), a.e. in Ω ,

and if f ∈W 1,∞(Ω), it further satisfies
∥∥∇P[a,b]( f )

∥∥
L∞(Ω)

≤ ‖∇ f‖L∞(Ω).
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Fig. 1 Sketch of a single
primal element T in Th, and
sub-elements T ∗i belonging to
the dual partition T ∗

h .
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3 Discontinuous finite volume formulation

Let us consider a regular, quasi-uniform partition Th of Ω̄ into closed tetrahedra, and
referred to as primal mesh. By hT we denote the diameter of a given element T ∈Th,
and the global meshsize by h = maxT∈Th hT ; Eh and E Γ

h will denote, respectively,
the set of all faces and boundary faces in Th, and he is the area of the face e. In
addition, each element T ∈ Th is split into four sub-tetrahedra T ∗i , i = 1, . . . ,4, by
connecting the barycentre of the element to its corner nodes (cf. Figure 1). The set
of all these elements generated by barycentric subdivison will be denoted by T ∗

h
and will be called dual partition of Ω . The symbols {·} and [[·]] will denote average
and jump operators. A finite dimensional trial space (that will be used for the state
and co-state velocity approximation) associated with Th is

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ), ∀T ∈Th},

the finite dimensional test space for velocities and corresponding to T ∗
h is

V∗h = {vh ∈ L2(Ω) : vh|T ∗ ∈ P0(T ∗), ∀T ∗ ∈T ∗
h },

and the discrete space for state and co-state pressure approximation is defined as

Qh = {qh ∈ L2
0(Ω) : qh|T ∈ P0(T ), ∀T ∈Th}.

In addition we define the higher-regularity space V(h) = Vh + [H2(Ω)∩H1
0(Ω)],

and the connection between discrete spaces associated to the two different meshes is
characterised by γ : V(h)→ V∗h, defined from γv|T ∗ = 1

he

∫
e v|T ∗ ds, for T ∗ ∈T ∗

h .
Let vh ∈ Vh. We test (2) and (3) against γvh ∈ V∗h and φh ∈ Qh, respectively,

and integrate by parts the momentum equation on each dual element and the mass
equation on each primal element to obtain: find (yh, ph) ∈ Vh×Qh such that

Ah(yh,vh)+ ch(yh,vh)+Ch(vh, ph) = (uh + f,γvh)0,Ω ∀vh ∈ Vh, (10)
Bh(yh,φh) = 0 ∀φh ∈ Qh, (11)
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where the discrete bilinear forms Ah(·, ·) and Bh(·, ·) are defined as (see also [4]):

Ah(wh,vh) = (K−1wh,γvh)0,Ω , Bh(vh,qh) = b(vh,qh)− ∑
e∈Eh

∫
e
{qhn}e · [[γvh]]e ds,

ch(wh,vh) =− ∑
T∈Th

4

∑
j=1

∫
A j+1BA j

µε(wh)n · γvh ds− ∑
e∈Eh

∫
e
{µε(wh)n}e · [[γvh]]e ds

− ∑
e∈Eh

∫
e
{µε(vh)n}e · [[γwh]]e ds+ ∑

e∈Eh

∫
e

αd

hδ
e
[[wh]]e · [[vh]]e ds,

Ch(vh,qh) = ∑
T∈Th

4

∑
j=1

∫
A j+1BA j

qhn · γvh ds+ ∑
e∈Eh

∫
e
{qhn}e · [[γvh]]e ds,

for all wh,vh ∈ Vh and qh ∈ Qh. Here, αd and δ are parameters independent of h.
An appropriate inf-sup condition for Bh can be found in [17].

Analogously, we can state a DFVE formulation for the adjoint equation (7)-(9)
as follows: find (wh,rh) ∈ Vh×Qh such that

Ah(wh,zh)+ ch(wh,zh)−Ch(zh,rh) = (yh−yd ,γzh) ∀zh ∈ Vh, (12)
Bh(wh,ψh) = 0 ∀ψh ∈ Qh, (13)

and introduce the following discrete norms in V(h):

|||vh|||21,h = ∑
T∈Th

|vh|21,T + ∑
e∈Eh

h−δ
e ‖[[vh]]e‖2

0,e , |||vh|||22,h = |||vh|||21,h + ∑
T∈Th

h2
T |vh|22,T ,

which are equivalent on Vh. Next, the discrete counterpart of (6) reads

(wh +λuh, ũh−uh)0,Ω ≥ 0 ∀ũh ∈ Uh,ad. (14)

Lemma 1. There exist suitable constants Ci =Ci(αd) independent of h,δ , such that

|Ah(v,w)| ≤C1 ‖v‖0,Ω ‖w‖0,Ω , and |ch(v,w)| ≤C3 |||v|||2,h |||w|||2,h ∀v,w ∈ V(h),

Ah(vh,vh)≥C2 ‖vh‖2
0,Ω and ch(vh,vh)≥C4 |||vh|||22,h ∀vh ∈ Vh.

We now turn to the L2−error analysis for the control field under element-wise
constant discretisation, where the discrete control space is defined as

U0
h = {uh ∈ L2(Ω) : uh|T ∈ P0(T ) ∀T ∈Th}.

As in [5], the L2−projection Π0 : L2(Ω)→ Uh,0 is such that there exists a positive
constant C independent of h satisfying

‖u−Π0u‖0,Ω ≤Ch‖u‖1,Ω , u ∈H1(Ω). (15)

Lemma 2. Let u be the unique solution of (1)-(4) and uh be the unique control
solution of (10)-(14) under element-wise constant discretisation (to be verified in
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[9]). Then
‖u−uh‖0,Ω = O(h).

Proof. Since Π0Uad ⊂ Uh,ad := Uh ∩Uad, the continuous and discrete optimalities
readily imply

(w+λu,uh−u)0,Ω +(wh +λuh,Π0u−uh)0,Ω ≥ 0.

Adding and subtracting u and rearranging terms we obtain

λ ‖u−uh‖2
0,Ω ≤ (w−wh,uh−u)0,Ω +(wh +λuh,Π0u−u)0,Ω ,

and since Π0 is an orthogonal projection and uh ∈Uh,ad, then the term λ (uh,Π0u−
u)0,Ω vanishes to give

λ ‖u−uh‖2
0,Ω ≤ (w−wh,uh−u)0,Ω +(wh,Π0u−u)0,Ω =: I1 + I2. (16)

For the first term, we use [11, Theorem 4.1] and arrive at

I1 ≤Ch2 ‖u−uh‖0,Ω +Ch‖u−uh‖2
0,Ω ,

whereas a bound for I2 follows from the orthogonality of Π0:

I2 ≤ ‖wh−Π0wh‖0,Ω ‖Π0u−u‖0,Ω ≤Ch |||wh|||2,h ‖Π0u−u‖0,Ω .

It is left to show that wh is uniformly bounded, which is a consequence of the coer-
civity of Ah(·, ·) and ch(·, ·), and the uniform boundedness of Uh,ad:

|||wh|||2,h ≤C
(
‖uh‖0,Ω +‖f‖0,Ω +‖yd‖0,Ω

)
≤C.

Substituting the bounds for I1 and I2 in (16), and using (15), the result follows. ut

4 A numerical test

We close with the numerical solution of a three-dimensional optimal control prob-
lem. The domain consists of a cylinder of height 4 and radius 1, aligned with
the x2 axis. The anisotropic permeability field is characterised by the tensor K =
diag(0.1,10−6χB+0.1χBc ,0.1), where B is a ball of radius 1/4 located at the domain
centre. A Poiseuille inflow profile is imposed for the state velocity at the bottom of
the cylinder (i.e. on x2 = 0): y = (0,10(1− x2

1− (x3− 1/2)2),0)T , a zero-pressure
is considered on x2 = 4, whereas homogeneous Dirichlet data are enforced on the
remainder of ∂Ω . The viscosity is constant µ = 0.01, the Tikhonov regularisation
parameter is λ = 1/2, the desired velocity is set to zero yd = 0, the bounds for
the control are a j = a = −0.1 and b j = b = 0.2, and a smooth body force is con-
sidered as the one in [1]: f = K−1(exp(−x2x3)+ x1 exp(−x2

2),cos(πx1)cos(πx3)−
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Fig. 2 Streamlines of the DFVE approximation of state and co-state velocities, along with con-
trol field, iso-surfaces of computed state and co-state pressures, and iso-surfaces of the control
components associated to a = a1 = a2 = a3 (in red) and b = b1 = b2 = b3 (blue).
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x2 exp(−x2
2),−x1x2x3− x3 exp(−x2

3))
T . The primal mesh has 76766 internal tetra-

hedral elements and 13663 vertices. The solution is based on the active set strat-
egy [2], involving primal and dual variables, and five iterations of that algorithm are
required to reach an adequate stopping criterion. Snapshots of the resulting approx-
imate fields are collected in Figure 2. The iso-surface of the u2 component of the
control indicates that most of the controlling occurs near the domain centre.
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