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We present a partitioned algorithm aimed at extending the capabilities of existing solvers 
for the simulation of coupled advection–diffusion–reaction systems and incompressible, 
viscous flow. The space discretisation of the governing equations is based on mixed 
finite element methods defined on unstructured meshes, whereas the time integration 
hinges on an operator splitting strategy that exploits the differences in scales between the 
reaction, advection, and diffusion processes, considering the global system as a number 
of sequentially linked sets of partial differential, and algebraic equations. The flow solver 
presents the advantage that all unknowns in the system (here vorticity, velocity, and 
pressure) can be fully decoupled and thus turn the overall scheme very attractive from the 
computational perspective. The robustness of the proposed method is illustrated with a 
series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection 
and Boussinesq systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Scope Our interest is in the efficient solution of advection–diffusion–reaction (ADR) systems coupled with the equations 
governing incompressible viscous flow within porous media (namely the Stokes–Darcy, or Brinkman equations). A fairly 
large class of problems in science and engineering assume such a particular structure, as it is one of the basic forms of rep-
resenting systems where physical, biological, and chemical processes exhibit a remarkable interaction. Notable examples are 
the density fingering of exothermic fronts in Hele–Shaw cells [19], where hydrodynamic instabilities are strongly influenced 
by the chemical reactions taking place at different spatial and temporal scales; convection-driven Turing patterns generated 
using Schnackenberg–Darcy models [26]; reversible reactive flow and viscous fingering in chromatographic separation [2,
29]; plankton dynamics [25]; forced-convective heat and mass transfer in fibrous porous materials [8]; or the bioconvection 
in porous suspensions of oxytactic bacteria [17,23]. Phenomena of this kind are also relevant in so-called doubly-diffusive 
flows [22,28,31], where convective effects are driven by two different density gradients having diverse rates of diffusion.

While the specific nature of the physical system of interest will imply diverse forms of coupling mechanisms, our goal is 
to focusely examine the interaction of the building-block systems through mass transport and external flow forces. Moreover, 
depending on the formulation and complexity of the underlying PDE-based model, the numerical solution of the problem 
may become a significant computational challenge. In particular, ADR equations feature intrinsic difficulties on their own 
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(related to high nonlinearities, targeting the preservation of physical properties, or stiffness of the ODE systems resulting 
from space discretisation, cf. [27]), which greatly intensify in the presence of coupling with flow equations, themselves being 
populated with complications very well-known to the CFD community (including violation of local conservativity, accuracy 
affected by heterogeneous coefficients, discrete inf–sup conditions, and many others. See e.g. [13,16]). The numerical solu-
tion of coupled PDEs via operator splitting techniques has a well-established tradition and many specialised contributions 
are available (cf. the monograph [18] and its abundant list of references). A few recent works analysing schemes for the par-
titioned coupling of reaction–diffusion systems and flow equations include, for instance, Runge–Kutta–DG splitting methods 
for miscible displacement in porous media [24] and conservative finite volume-element schemes for the coupling of flow 
and transport [10,33]. A similar structure of the coupled equations is shared by other classical systems as the Biot equations 
in poroelasticity, or thermoelasticity-based problems, for which a much richer, numerically-oriented literature is available 
(see e.g. [3,9,14,20,21,30,32] and the references therein).

Other contributions closely related to the present work include the discussion on nonlinear stability of doubly-diffusive 
interactions in Brinkman flows exposed in [1], whereas numerical simulations in the two-dimensional case were performed 
in [11]. Here we explore very similar scenarios, but allowing the diffusive terms to depend nonlinearly on the species con-
centrations, we consider the three-dimensional case as well, and we write the Brinkman equations in terms of vorticity, 
velocity, and pressure of the incompressible fluid. We stress that the mathematical properties of such a formulation have 
been addressed only recently in [4], where also an explicit finite element method was introduced for its numerical ap-
proximation. The present work essentially complements [1,4] in the sense that we define a family of four basic coupling 
methods to numerically solve the governing equations. The precise form of the schemes will vary depending on whether the 
Brinkman problem admits a pure vorticity formulation (as the one proposed in [7]), and on two main sequential substruc-
turing techniques to decouple the advection–diffusion from the reaction steps in the ADR system. Insight on the properties 
of each coupling strategy will be sought via a theoretical a priori stability analysis of the separate blocks, whereas the dis-
cretisation will then follow the natural formulation adopted by the particular splitting of the problem. For instance, one 
of the resulting methods consists of Raviart–Thomas approximation of velocity, the discrete vorticity is constructed with 
Nédélec elements, pressure is approximated with piecewise constant elements, and the species’ concentrations with piece-
wise linear and continuous Lagrange elements. A thorough comparison between the splitting methods will be given in terms 
of computational burden, experimental accuracy, and behaviour of the nonlinear solvers.

Outline We have structured the contents of this paper in the following way. In Section 2, we summarise the main ingre-
dients of the model problem and introduce its weak formulation. Section 3 considers the finite element discretisation and 
describes the decoupling mechanisms applied to the fully nonlinear problem, focusing on the flow-ADR interaction, whereas 
two examples of splitting techniques for the ADR blocks are discussed in Section 4. Numerical simulations are shown and 
extensively discussed in Section 5, and we close with a few final remarks collected in Section 6.

2. Problem formulation

2.1. The governing equations

The coupled system of interest takes place in a bounded domain � ⊂ R
d , d = 2, 3 with Lipschitz boundary. It can be 

derived from basic principles of mass, momentum, and energy conservation, and its final form is written in terms of the 
fluid velocity u = (u1, . . . , ud)

T , the rescaled vorticity ω (vector (ω1, ω2, ω3)
T if d = 3, or scalar ω if d = 2), the pressure p, 

and a vector c = (c1, . . . , cm)T of volumetric fraction or total dissolved concentration of m distinct substances: For a.e. 
(x, t) ∈ �T := � × [0, T ],

∂t c + (u · ∇)c − div(D(c)∇c) = G(c),

σ u + √
μ curlω + ∇p = ρ F (c),

ω = √
μ curl u,

div u = 0,

(2.1)

where ρ, μ are the fluid density and viscosity, respectively (here assumed positive, constant parameters), σ(x) is the inverse 
permeability tensor, F represents the force exerted by the species on the fluid motion, encoding also external forces, D is a 
(generally nonlinear) cross-diffusion matrix, and G contains the reaction kinetics (representing production and degradation) 
of the species.

Model (2.1) assumes that changes in the chemical concentrations do not influence thermophysical properties of the 
fluid such as viscosity or density, but rather they are nonlinearly coupled by the source term on the momentum equation. 
Conversely, we suppose that the viscous flow affects the species dynamics by means of advection only. The model also 
considers that the interaction of the species takes place in a porous medium composed of a bed of light fixed particles. 
Equations (2.1) are complemented with the following standard boundary and initial data:

(cuT − D(c)∇c)n = 0, u · n = u∂ , ω × n = ω∂ , (x, t) ∈ ∂� × [0, T ],
c = c , (x, t) ∈ � × {0}, (2.2)
0
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stating that no flux occurs across the boundary (the species cannot leave the medium), and that a slip velocity together 
with a compatible vorticity trace are imposed along the domain boundary. These will be assumed homogeneous in the rest 
of the presentation.

2.2. Weak form under two different Brinkman formulations

We proceed to derive a weak formulation for (2.1). First, let us introduce the trial spaces where the weak solutions will 
live, and whose natural regularity is indicated by the formulation below: c ∈ L2(0, T ; S), ∂t c ∈ L2(0, T ; S′), u ∈ L2(0, T ; V), 
ω ∈ L1(0, T ; W), and p ∈ L2(� × [0, T ]); with S := H1(�), V := H(div; �), W := H(curl; �) and Q := L2

0(�) = {q ∈ L2(�) :∫
�

q = 0}.
The ADR equations are multiplied by s ∈ S0 and integrated by parts over the spatial domain, the momentum equation 

for the flow is tested against v ∈ V0, the constitutive relation is tested against θ ∈ W0, and the mass conservation law is 
multiplied by q ∈ Q . In turn, the boundary conditions (2.2) suggest the following definition of the test spaces

S0 = {s ∈ S : s = 0 on ∂�}, V0 = {v ∈ V : v · n = 0 on ∂�}, W0 = {θ ∈ W : θ × n = 0 on ∂�},
which leads to the problem: For t ∈ (0, T ], find (c(t), u(t), ω(t), p(t)) ∈ S × V × W × Q such that∫

�

[∂t c(t) + (u(t) · ∇)c] · s +
∫
�

D(c(t))∇c(t) : ∇s =
∫
�

G(c(t)) · s, ∀s ∈ S0,

∫
�

σ u(t) · v + √
μ

∫
�

curlω(t) · v −
∫
�

p(t)div v =
∫
�

ρ F (c(t)) · v, ∀θ ∈ W0,

√
μ

∫
�

u(t) · curl θ −
∫
�

ω(t) · θ = 0, ∀v ∈ V0,

−
∫
�

q div u(t) = 0, ∀q ∈ Q .

(2.3)

Setting χ = (c, u, ω, p)T , the matrix form of (2.3) can be recast as follows

⎛⎜⎜⎝
Ac 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ χ̇(t) +

⎛⎜⎜⎜⎜⎝
D − G C 0 0

−F Au B1 −B2

0 B∗
1 −Aω 0

0 −B∗
2 0 0

⎞⎟⎟⎟⎟⎠χ(t) = 0, (2.4)

where dashed lines separate sub-blocks associated to the ADR and Brinkman systems, and the linear and nonlinear operators 
defining the matrix system are given by

[Ac(c), s] :=
∫
�

c · s, [C(c); u, s] :=
∫
�

(u · ∇)c · s, [D(c), s] :=
∫
�

D(c)∇c : ∇s,

[G(c), s] :=
∫
�

G(c) · s, [F(c), v] :=
∫
�

ρ F (c) · v, [Au(u), v] :=
∫
�

σ u · v,

[B1(ω), v] :=
∫
�

√
μ curlω · v, [B2(p), v] :=

∫
�

p div v, [Aω(ω), θ ] :=
∫
�

ω · θ .

Here the diffusion, reaction, and forcing terms are assumed smooth enough: D is positive, monotone (or coercive in the 
linear case), and continuous; G is continuous, uniformly bounded, and positivity preserving; and F is linear in c . More 
precise conditions on the coefficients will be specified later on. Classical derivations of a priori stability bounds will require 
an additional regularity for the velocity u ∈ L2(0, T ; V) ∩ L∞(0, T ; L∞(�)d) (see e.g. [12,15] for flow-transport coupling in 
the context of miscible displacement in porous media).

Alternatively from (2.3), we can picture a formulation where adequate manipulations of the Brinkman equations allow 
a decoupling between the velocity, vorticity, and pressure blocks, under the assumption of uniformly bounded permeabil-
ity and homogeneous boundary conditions for velocity and vorticity (see [7]). The weak form is obtained by testing the 
constitutive equation in (2.1) against functions in W0, integrating by parts, and writing the velocity in terms of vorticity 
and pressure using the momentum equation in (2.1). Then, after applying again an integration by parts, one can eventually 
reformulate (2.4) as
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⎛⎜⎜⎝
Ac 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ χ̇(t) +

⎛⎜⎜⎜⎜⎝
D − G C 0 0

−F1 Au 0 0

−F2 0 −Âω 0
−F3 0 0 Âp

⎞⎟⎟⎟⎟⎠χ(t) = 0, (2.5)

where the modified blocks read

[Âω(ω), θ ] :=
∫
�

σω · θ +
∫
�

μ curlω · curl θ, [F2(c), θ ] :=
∫
�

√
μρ F (c) · curl θ,

[Âp(p,q)] :=
∫
�

∇p · ∇q, [F3(c),q] :=
∫
�

ρ F (c) · ∇q,

[F1(c), v] :=
∫
�

(
ρ F (c) − √

μ curl ω̃ − ∇ p̃
) · v,

and where ·̃ denotes an uncoupled quantity. Another crucial difference with respect to (2.3), is that the pressure requires 
higher regularity (now Q = H1(�) ∩ L2

0(�)), and that the velocity is only needed in L2(0, T ; L2(�)) ∩ L∞(0, T ; L∞(�)d). Both 
Brinkman formulations lead to symmetric systems, which is a property that may be exploited by specialised preconditioners 
and iterative solvers.

2.3. A general operator splitting

Using the matrix systems (2.4) and (2.5), one can readily state a general splitting of the coupled ADR-Brinkman problem 
in the form

H0χ̇ +H1χ +H2χ = 0,

where the operators Hi , i = 0, 1, 2 are formally defined by

H0 =
⎛⎜⎝ Ac 0 · · ·

0 0 · · ·
...

...
. . .

⎞⎟⎠ , H1 =
⎛⎜⎝ D − G + C 0 · · ·

0 0 · · ·
...

...
. . .

⎞⎟⎠ , H2 =

⎛⎜⎜⎝
0 0 0 0

−F Au B1 −B2
0 B∗

1 −Aω 0
0 −B∗

2 0 0

⎞⎟⎟⎠ ,

if using (2.4), or assuming the modified form

H2 =

⎛⎜⎜⎝
0 0 0 0

−F1 Au 0 0
−F2 0 −Âω 0
−F3 0 0 Âp

⎞⎟⎟⎠ ,

if using (2.5). Then, the solution of the ADR system can be characterised by H0χ̇ + H1χ = 0, and that of the Brinkman 
blocks by H2χ = 0.

In turn, and as will be specified later in Section 4, the solution of the ADR system can be split again into a pure 
advection–diffusion and a pure reaction step, H0χ̇ +H11χ = 0 and H0χ̇ +H12χ = 0, respectively, where

H11 =
⎛⎜⎝ D + C 0 · · ·

0 0 · · ·
...

...
. . .

⎞⎟⎠ , H12 =
⎛⎜⎝ −G 0 · · ·

0 0 · · ·
...

...
. . .

⎞⎟⎠ .

3. A family of segregated finite element methods

3.1. Meshes and finite dimensional spaces

Let Th denote a simplicial decomposition of the spatial domain � into elements K of maximum size h. For a fixed h > 0
we introduce finite dimensional subspaces for the k-th order approximation of the unknowns: Sh ⊂ S, Vh ⊂ V, Wh ⊂ W, and 
Q h ⊂ Q . The concentration and vorticity finite element spaces assume the form

Sh = {sh ∈ S : sh|K ∈ [Pk+1]m(K ), ∀K ∈ Th}, Wh = {θh ∈ W : θh|K ∈NDk+1(K ), ∀K ∈ Th},
while, depending on whether the formulation (2.4) or (2.5) are used, the finite element spaces for the velocity and pressure 
unknowns are defined as:
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Vh = {vh ∈ V : vh|K ∈RTk(K ), ∀K ∈ Th}, Q h = {qh ∈ L2(�) : qh|K ∈ Pk(K ), ∀K ∈ Th},
or

Vh = {vh ∈ V : vh|K ∈ [Pk(K )]d, ∀K ∈ Th}, Q h = {qh ∈ H1(�) : qh|K ∈ Pk+1(K ), ∀K ∈ Th},
respectively. Here RTk stands for the local Raviart–Thomas elements of order k (H(div; �)-conforming), NDk is the local 
Nédélec vectorial element of degree k (H(curl; �)-conforming), and Pk is the local space of Lagrange finite elements of 
order k. Spaces Sh and Wh are equipped with the following norms as in [7]:

‖sh‖2
H1(�)

:= ‖sh‖2
L2(�)

+ ‖∇sh‖2
L2(�)

, ∀sh ∈ Sh,

‖|θh‖|21,μ := ‖θh‖2
L2(�)

+ μ‖ curl θh‖2
L2(�)

, ∀θh ∈ Wh.

Notice that the vorticity norm is μ-dependent, and the norms for the spaces Vh and Q h defined by the first Brinkman 
formulation (2.4) are:

‖vh‖2
H(div;�) := ‖vh‖2

L2(�)
+ ‖div vh‖2

L2(�)
, ∀vh ∈ Vh,

and the natural L2(�)-norm for Q h . On the other hand, for the second set of Brinkman equations (2.5) we consider the 
usual L2(�)- and H1(�)-norms for the spaces Vh and Q h , respectively.

The Galerkin method associated to (2.4) or (2.5) is presented in what follows, using a partitioned solution approach.

3.2. Outer ADR-Brinkman splitting scheme

A straightforward splitting method consists in, starting from the initial concentrations’ distribution, solving the flow 
equations and then pass the computed velocity to advect the ADR system. For a backward Euler time advancing scheme, 
and depending on which of the two Brinkman solvers is considered (i.e., using (2.4) or (2.5)), the following steps are applied 
at each time step tn+1, where the spaces are chosen accordingly to the distinction made in the previous section.

(B1): Given cn
h , find (un+1

h , ωn+1
h , pn+1

h ) ∈ Vh × Wh × Q h such that:∫
�

σ un+1
h · vh + √

μ

∫
�

curlωn+1
h · vh −

∫
�

pn+1
h div vh =

∫
�

ρ F (cn
h) · vh, ∀vh ∈ Vh,0,

√
μ

∫
�

un+1
h · curl θh −

∫
�

ωn+1
h · θh = 0, ∀θh ∈ Wh,0,

−
∫
�

qh div un+1
h = 0, ∀qh ∈ Q h,0,

(3.1)

or
(B2): Given cn

h

– First solve the pure vorticity problem: Find ωn+1
h ∈ Wh such that:∫

�

σωn+1
h · θh + μ

∫
�

curlωn+1
h · θh = √

μ

∫
�

ρ F (cn
h) · curl θh, ∀θh ∈ Wh,0

– Then, solve the pure pressure problem:∫
�

∇pn+1
h · ∇qh =

∫
�

ρ F (cn
h) · ∇qh, ∀Q h

– Finally recover the velocity vector un+1
h ∈ Vh as:

un+1
h = σ−1

(
ρ F (cn

h) − √
μ curlωn+1

h − ∇pn+1
h

)
.

(ADR): Given un+1
h solution of the Brinkman problem through (B1) or (B2), solve the ADR problem: find cn+1

h ∈ Sh such 
that: ∫

�

cn+1
h − cn

h

�t
· sh +

∫
�

(un+1
h · ∇)cn+1

h · sh +
∫
�

D(cn+1
h )∇cn+1

h : ∇sh =
∫
�

G(cn+1
h ) · sh ∀sh ∈ S0,h. (3.2)
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The two solution strategies adopting either (B1) or (B2) lead to outer schemes for the Brinkman-ADR problem of the type 
(B1-ADR) or (B2-ADR). We stress that, for the latter scheme, if lowest order elements are employed (that is, k = 0) then 
an intermediate step is required to ensure that the discrete advective term is well-defined. A projection of un+1

h onto RTk
would typically suffice. The inner solvers for the ADR equations will be made precise in the sequel.

Under suitable hypotheses one can derive the unique solvability of each discrete problem (B1), (B2) and (ADR). More 
specifically, if F (cn

h) ∈ L2(�) then the invertibility of the discrete Brinkman problem (B1) follows from a discrete inf–sup con-
dition and the Babuška–Brezzi theory [5, Theorem 3.2 & Corollary 3.1]. Likewise, also for F (cn

h) ∈ L2(�), the well-posedness 
of (B2) is a direct consequence of the Lax–Milgram lemma (see [7, Theorems 3.1 and 3.2] and also [6] for the axisymmet-
ric case). Finally, thanks to the uniform positivity and monotonicity of the operator D(·), the solvability of the nonlinear 
discrete problem (ADR) is ensured according to the classical results collected in [12,15] (see also [4]).

Note that while the flow problem is linear, the set of nonlinear ADR equations uses a nested Newton–Raphson iterative 
scheme to find an approximation of cn+1

h at each time step.

3.3. A priori estimates for the energy of the system

Let us recall the discrete Gronwall inequality

Lemma 3.1. If φ0 ≤ g0 and

φn ≤ g0 +
n−1∑
k=0

pk +
n−1∑
k=0

qkφk, ∀n ≥ 1,

then

φn ≤
(

g0 +
n−1∑
k=0

pk

)
exp

(
n−1∑
k=0

qk

)
, ∀n ≥ 1.

The stability of the outer splitting method described in Section 3.2 is established by the following a priori bound, written 
in terms of the system’s discrete energy norm

‖χn
h‖2 := ‖un

h‖2
H(div;�) + ‖|ωn

h‖|21,μ + ‖pn
h‖2

L2(�)
+ ‖cn

h‖2
L2(�)

, ∀n ≥ 0.

Before stating the main result in this Section, we recall the following auxiliary a priori estimate, to be exploited in the 
sequel.

Lemma 3.2. Let cn
h ∈ Sh and assume that F (c) = (α · c)g, for constant α ∈ R

m and g = −e3 . Then, the solution (un
h, ωn

h, pn
h) ∈

Vh × Wh × Q h of (3.1) exists and is unique. Moreover, there exists C > 0 independent of μ such that:

‖ph‖L2(�) ≤ C‖ρ F (cn
h)‖L2(�) = Cρ‖α‖‖cn

h‖L2(�).

The proof of this result can be found in [5] and it is a consequence of the inf–sup condition satisfied by the bilinear 
form defined by [B2(p), v].

Theorem 3.3. Let χn
h = (cn

h, un
h, ωn

h, pn
h), ∀n = 0, . . . , NT be the solution of the outer splitting defined by (3.1)–(3.2) in (B1-ADR). 

Suppose that F (c) = (α · c)g, for constant α ∈ R
m and g = −e3 , and assume that there exists Dmin > 0 such that sT (D(s)s) ≥

Dmin‖s‖2 for all s. Then, there exist a constant C(σ , ρ, α) > 0 and positive non-decreasing functions C0(tn+1), C1(tn+1), such that, 
for each time step tn:

‖χn+1
h ‖2 + 2�t D2

min

n∑
k=0

‖∇ck+1
h ‖2

L2(�)
≤ C0(t

n+1)‖c0
h‖2

L2(�)
+ C1(t

n+1)

n∑
k=0

‖G(ck+1
h )‖2

L2(�)
+ C(σ ,ρ,α)‖cn

h‖2
L2(�)

.

In particular, if ‖G(c)‖L2(�) ≤ G for a given G ≥ 0, then, at each timestep the energy norm admits the following bound

‖χn
h‖2 ≤ ‖χ0

h‖2
NT∑

k=0

Ck(σ ,ρ,α)C0(t
NT −k) + G2

NT∑
k=0

Ck(σ ,ρ,α)(NT − k)C1(t
NT −k) + C NT (σ ,ρ,α)‖χ0

h‖2.

Proof. Using integration by parts we observe that the convective term in (3.2) can be rewritten in the skew-symmetric 
form:
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∫
�

(un+1
h · ∇)cn+1

h · sh = 1

2

∫
�

(un+1
h · ∇)cn+1

h · sh − 1

2

∫
�

(un+1
h · ∇)sh · cn+1

h .

Next, testing equation (3.2) with sh = cn+1
h ∈ Sh and using Young’s inequality we have:

1

2
‖cn+1

h ‖2
L2(�)

+ �t Dmin‖∇cn+1
h ‖2

L2(�)

≤ 1

2
‖cn

h‖2
L2(�)

+ �t

2
‖G(cn+1

h )‖2
L2(�)

+ �t

2
‖cn+1

h ‖2
L2(�)

,

and summing up for k = 0, . . . , n − 1 implies that

1

2
‖cn

h‖2
L2(�)

+ �t Dmin

n−1∑
k=0

‖∇ck+1
h ‖2

L2(�)

≤ 1

2
‖c0

h‖2
L2(�)

+ �t

2

n−1∑
k=0

‖G(ck+1
h )‖2

L2(�)
+ �t

2

n−1∑
k=0

‖ck+1
h ‖2

L2(�)
.

(3.3)

Applying Lemma 3.1 we can then write:

‖cn
h‖2

L2(�)
≤ exp

(
tn){

‖c0
h‖2

L2(�)
+ �t

n−1∑
k=0

‖G(ck+1
h )‖2

L2(�)

}
, ∀n ≥ 1.

Applying this reasoning for n + 1, and substituting back in the last term of (3.3), after collecting terms we obtain that there 
are two functions C0(tn+1), C1(tn+1) > 0 such that the following estimate holds:

‖cn+1
h ‖2

L2(�)
+ 2�t Dmin

n∑
k=0

‖∇ck+1
h ‖2

L2(�)
≤ C0(t

n+1)‖c0
h‖2

L2(�)
+ C1(t

n+1)

n∑
k=0

‖G(ck+1
h )‖2

L2(�)
. (3.4)

On the other hand, regarding the Brinkman problem, we proceed to test (3.1) against

vh = un+1
h + c1

√
μ curlωn+1

h ∈ V0,h, θh = −ωn+1
h ∈ W0,h, qh = −pn+1

h − c2 div un+1
h ∈ Q h,

where c1 and c2 are positive constants to be determined. Summing up in (3.1) we have:

σ‖un+1
h ‖2

L2(�)
+

∫
�

σ c1
√

μun+1
h · curlωn+1

h +
∫
�

√
μ curlωn+1

h · un+1
h + c1μ‖ curlωn+1

h ‖2
L2(�)

−
∫
�

pn+1
h div un+1

h −
∫
�

pn+1
h c1

√
μdiv curlωn+1

h −
∫
�

√
μun+1

h · curlωn+1
h

+ ‖ωn+1
h ‖2

L2(�)
+

∫
�

pn+1
h div un+1

h + c2‖div un+1
h ‖2

L2(�)

=
∫
�

ρ F (cn
h) · un+1

h +
∫
�

c1
√

μρ F (cn
h) · curlωn+1

h ,

and then applying Young’s inequality gives:

c1
√

μ

∫
�

σ un+1
h · curlωn+1

h ≥ −σmin

2
‖un+1

h ‖2
L2(�)

− c2
1σ

2
max

2σmin
μ‖ curlωn+1

h ‖2
L2(�)

,

∫
�

ρ F (cn+1
h ) · un+1

h ≤ σmin

4
‖un+1

h ‖2
L2(�)

+ ρ2

σmin
‖α‖2‖cn

h‖2
L2(�)

,

∫
�

c1
√

μρ F (cn
h) · curlωn+1

h ≤ c2
1μ

2
‖ curlωn+1

h ‖2
L2(�)

+ ρ2

2
‖α‖2‖cn

h‖2
L2(�)

.

Because div curl is the zero operator, we have that F (cn) = (α · cn)g, and collecting terms we obtain:
h h
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σmin

4
‖un+1

h ‖2
L2(�)

+ c2‖div un+1
h ‖2

L2(�)
+ c1

{
1 − c1

2

(
σ 2

max

σmin
+ 1

)}
μ‖ curlωn+1

h ‖2
L2(�)

+ ‖ωn+1
h ‖2

L2(�)

≤ ρ2‖α‖2
(

1

σmin
+ 1

2

)
‖cn

h‖2
L2(�)

.

Notice that the term involving the norm of pressure has disappeared. Taking c1 = σmin
(σ 2

max+σmin)
, c2 = σmin

4 we obtain that there 

exists a constant C̃(σ , ρ, α) > 0 such that:

‖un+1
h ‖2

L2(�)
+ ‖div un+1

h ‖2
L2(�)

+ ‖ωn+1
h ‖2

L2(�)
+ μ‖ curlωn+1

h ‖2
L2(�)

≤ C̃(σ ,ρ,α)‖cn
h‖2

L2(�)
.

The next step consists in recovering an estimate for the norm of the solution of the Brinkman problem involving the 
pressure norm. This is done via Lemma 3.2, from which we obtain that there is a constant C(σ , ρ, α) > 0 such that:

‖un
h‖2

H(div;�) + ‖|ωn
h‖|21,μ + ‖pn

h‖2
L2(�)

≤ C(σ ,ρ,α)‖cn
h‖2

L2(�)
. (3.5)

Combining estimates (3.4) and (3.5) we have the desired result. �
4. Dedicated partitioned schemes for the ADR equations

We now address the numerical solution of the nonlinear ADR problem (3.2). Based on the structure of the nonlinear 
diffusion matrix D(c) and of the reaction vector G(c) = (G1(c), . . . , Gm(c)), diverse techniques can be employed. Let {ϕ i :
i = 1, . . . , NSh } be the vector-valued basis of shape functions of the finite element space for the concentration Sh , where 
NSh = dim(Sh). Then we denote the finite element approximation of the concentration vector as:

ch(x, tn) =
NSh∑
i=1

Ci(t
n)ϕ i(x) =

MSh∑
i=1

m∑
j=1

C j
i (t

n)ϕ j
i (x), (4.1)

where MSh = NSh

m
and C j

i represents the j-th component of ch at the mesh node i and we regrouped the basis vectors as 

ϕ1
i = (ϕi, · · · , 0)T , . . ., ϕm

i = (0, · · · , ϕi)
T .

The algebraic form of (3.2) is derived by substituting in the weak formulation the expression (4.1) and the analogous 
form for the test function. First we will focus on a monolithic solver for the ADR system based on a Newton method with 
full Jacobian.

4.1. A fully implicit Newton–Raphson method

From (3.2) the following nonlinear algebraic system must be solved at each time-step tn+1:(
Ac

�t
+ C(un+1

h ) + D(Cn+1)

)
Cn+1 = G̃(Cn+1) + 1

�t
Cn, (4.2)

where the global nodal concentration vector in RNSh and the reaction vector are:

(Cn)i = Cn
i , (G̃(C))i =

∫
�

G

⎛⎝NSh∑
k=1

Ckϕk

⎞⎠ϕ i, i = 1, . . . , NSh , (4.3)

and matrices Ac , C , D in RNSh ×R
NSh are given by:

(Ac)i j =
∫
�

ϕ j · ϕ i, (C)i j =
∫
�

(
un+1

h · ∇
)
ϕ j · ϕ i,

(D(C))i j =
∫
�

D

⎛⎝NSh∑
k=1

Ckϕk

⎞⎠∇ϕ j : ∇ϕ i .

(4.4)

Notice that the convection matrix C depends on the velocity vector un+1
h , solution of the Brinkman problem computed at 

the previous stage of the splitting scheme so that it is constant with respect to the unknown concentration vector cn+1
h . 

The nonlinearity of system (4.2) resides in the diffusion matrix D and in the reaction vector G̃ which are functions of the 
unknown vector cn+1. We introduce the monolithic ADR residual vector:
h
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Rn(C) :=
(

Ac

�t
+ C(un+1

h ) + D(C)

)
C − G̃(C) − Ac

�t
Cn,

and realise that solving (4.2) is equivalent to solve Rn(Cn+1) = 0. With this purpose, we employ the Newton–Raphson itera-
tive procedure: Suppose that at time tn and k-th iteration of the Newton–Raphson method, we are given an approximation 
Cn+1,k of the concentration vector Cn+1, then we solve the following linear system in the correction δC and update as:(

Ac

�t
+ C(un+1

h ) + D̃(Cn+1,k) − ∂ G̃

∂C
(Cn+1,k)

)
δC = −Rn(Cn+1,k), (4.5)

Cn+1,k+1 = Cn+1,k + δC, (4.6)

where the matrices D̃ and ∂ G̃/∂C arise form the linearisation of the diffusion matrix and the reaction vector, respectively, 
and are given by:

(D̃(C))i j = Dij(C) +
NSn∑
k=1

⎛⎝∫
�

∂

∂c
D(C)ϕ j∇ϕk : ∇ϕ i

⎞⎠ Ck,

(
∂ G̃

∂C
(C))i j =

∫
�

ϕT
j ∇G(C)ϕ i

(4.7)

and the matrix 
∂

∂c
D(C)ϕ j is a shorthand notation for 

m∑
s=1

∂ D

∂cs
(C)ϕs

j . The Newton–Raphson system (4.5) for the full mono-

lithic ADR can be reformulated as a variational problem for the finite element correction vector δch , leading to the following 
solver for the ADR system:

(ADR1): Given a velocity un+1
h , a solution cn

h of the ADR at time tn , and the approximate solution cn+1,k
h at the k-th iteration 

of the Newton–Raphson method for the full monolithic ADR system, find δch ∈ Sh,0 such that:(
1

�t
Ac + C(un+1

h ) + dDcn+1,k
h

− dGcn+1,k
h

)
δch = −Rn(cn+1,k

h ), (4.8)

and update cn+1,k+1
h = cn+1,k

h + δch , until ‖δch‖L2(�) ≤ tol.

The linear and bilinear operators in the variational problem (4.8) are given by:

[
Rn(c), s

] := 1

�t
[Ac(c − cn), s] + [C(c); un+1

h , s] + [D(c), s] − [G(c), s],

[dDc(δc), s] :=
∫
�

D(c)∇δc : ∇s +
∫
�

∂

∂c
D(c)δc ∇c : ∇s,

[dGc(δc), s] :=
∫
�

sT ∇G(c)δc.

(4.9)

We stress that in problem (4.8) we require that the unknown δch = cn+1,k+1
h − cn+1,k

h is in Sh,0, because it must be zero 
at the boundaries where the Dirichlet conditions apply. To obtain an adequate initial guess cn+1,0

h we can solve, at the 
beginning of the Newton–Raphson scheme, a simplified linear problem, typically with D(cn

h) and G(cn
h).

The (ADR1) solver for the full ADR system using Newton–Raphson method is combined with a flow solver (B1) or (B2), 
leading to a global solution scheme for the problem, denoted as (B1/B2-ADR1). The steps of the solution strategy of our 
problem using the (B1/B2-ADR1) are summarised in Algorithm 1.

4.2. Inner splitting of the ADR system

When the diffusion matrix D is constant and the reaction term G(c) leads to highly stiff systems, it is convenient to split 
the ADR dynamics into a pure advection–diffusion phase and into a pure reaction phase. This implies we solve problem (3.2)
separating the nonlinear term due to reaction G(c), which defines a nonlinear system of ODEs, from the (typically more 
regular and smooth) advection–diffusion process. This method is denoted (ADR2) and consists in solving the ADR system in 
two steps
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Data: σ , μ, ρ , α, D , G , �t , N , tol;
Initialise: u0

h , ω0
h , p0

h , c0
h ;

for n = 1, . . . , N time steps do
Given cn

h , solve the Brinkman system (B1):⎛⎝ Au B1 B2
B∗

1 −Aω 0
−B∗

2 0 0

⎞⎠⎛⎝ un+1
h

ωn+1
h

pn+1
h

⎞⎠ =
⎛⎝ F1(cn

h)

0
0

⎞⎠ ;

or its split counterpart (B2):
• Âωωn+1

h =F2(cn
h),

• Âp pn+1
h =F3(cn

h),

• un+1
h ← A−1

u F1(cn
h), and project discrete velocity if using lowest order elements;

Update: un+1
h ← un

h; ωn+1
h ← ωn

h; pn+1
h ← pn

h;

Given un+1
h , solve the full ADR system via Newton–Raphson (ADR1):

Initialize: cn+1,0
h ;

while ‖δc‖L2(�) ≥ tol do
Solve the linearised ADR equations monolithically:(

1

�t
Ac + C(un+1

h ) + dDcn+1,k
h

− dGcn+1,k
h

)
δch = −Rn(cn+1,k

h ),

Update: cn+1,k+1
h ← cn+1,k

h + δch;
end

Update: cn+1
h ← cn

h;
end

Algorithm 1: Staggered procedure (B1/B2-ADR1) for the Brinkman problem solved with either (B1) or (B2) and the full 
ADR problem solved with (ADR1).

(ADR2): – Pure advection–diffusion phase: Given un+1
h and cn

h , find cn+1,∗
h in Sh solution of the linear problem:

∫
�

cn+1,∗
h − cn

h

�t
· sh +

∫
�

(un+1
h · ∇)cn+1,∗

h · sh +
∫
�

D∇cn+1,∗ : ∇sh = 0, ∀sh ∈ S0,h. (4.10)

– Pure reaction phase: Setting cn
h = cn+1,∗

h , solve the nonlinear problem:∫
�

cn+1
h − cn

h

�t
· sh =

∫
�

G(cn+1
h ) · sh, ∀sh ∈ S0,h. (4.11)

Problems (4.10) and (4.11) are discretised using the same notations (4.4) and (4.3) for matrices and vectors as in the 
previous section. The nonlinear algebraic system equivalent to the pure reaction phase (4.11), that must be solved at each 
time iteration tn+1 is given by:

Ac

�t
Cn+1 = Ac

�t
Cn + G̃(Cn+1), (4.12)

where matrices and vectors Ac , Cn and G̃ are defined in (4.4), (4.3). System (4.12) can be solved iteratively using the 
Newton–Raphson method. With this aim we define the residual R∗,n of the pure reaction phase as

R∗,n := Ac

�t
Cn+1 − Ac

�t
Cn − G̃(Cn+1),

and again we notice that solving (4.12) is equivalent to solve R∗,n(Cn+1) = 0. Given an approximate solution of the system 
(4.12) Cn+1,k at iteration k, one solves the Newton–Raphson system for the pure reaction problem:(

Ac

�t
− ∂ G̃

∂C
(Cn+1,k)

)
δC = −R∗,n(Cn+1,k),

Cn+1,k+1 = Cn+1,k + δC.

(4.13)



P. Lenarda et al. / Journal of Computational Physics 344 (2017) 281–302 291
Data: σ , μ, ρ , α, D , G , �t , N , tol;
Initialise: u0

h , ω0
h , p0

h , c0
h ;

for n = 1, . . . , N time steps do
Given cn

h , solve the Brinkman system (B1):⎛⎝ Au B1 B2
B∗

1 −Aω 0
−B∗

2 0 0

⎞⎠⎛⎝ un+1
h

ωn+1
h

pn+1
h

⎞⎠ =
⎛⎝ F1(cn

h)

0
0

⎞⎠ ;

or its split counterpart (B2):
• Âωωn+1

h =F2(cn
h),

• Âp pn+1
h =F3(cn

h),

• un+1
h ←A−1

u F1(cn
h), and project discrete velocity if using lowest order elements;

Update: un+1
h ← un

h; ωn+1
h ← ωn

h; pn+1
h ← pn

h;

Given un+1
h , solve the advection–diffusion phase:(

Ac + C(un+1
h ) +D

)
cn+1,∗

h = 0;

Initialize: cn+1,0
h = cn+1,∗

h ;
Solve the pure reaction phase via Newton–Raphson:
while ‖δch‖L2(�) ≥ tol do

Solve the linearised reaction problem:(Ac

�t
− dGcn+1,k

h

)
δch −R∗,n(cn+1,k

h );

Update: cn+1,k+1
h ← cn+1,k+1

h + δch;
end
Update:
cn+1

h ← cn
h;

end

Algorithm 2: Staggered procedure (B1/B2-ADR2) for the Brinkman problem solved with either (B1) or (B2) and the full 
ADR problem solved with (ADR2).

System (4.13) can be rewritten as a variational problem for the finite element correction δch . Given cn
h and the approximate 

solution cn+1,k
h at k-th iteration, the problem is to find δch ∈ S0,h such that:(

Ac

�t
− dGcn+1,k

h

)
δch = −R∗,n(cn+1,k

h ).

The operator dGc is given in (4.9), while the linear operator corresponding to the pure-reaction residual vector is:[
Rn,∗(c), s

] := 1

�t
[Ac(c − cn), s] − [G(c), s].

Notice that if the reaction vector G is zero and the diffusion matrix is constant, then the (ADR2) solver reduces to a pure 
linear advection–diffusion problem (4.10). A global solver for the Brinkman-ADR problem is then obtained combining one 
of the two Brinkman solvers (B1) or (B2) and (ADR2). These solution strategies are collected in Algorithm 2.

5. Numerical tests

This section contains a collection of numerical examples serving as validation of the coupling strategies discussed in 
Section 3, and illustrating the behaviour of the model in two applications of wide interest. Before addressing the applicative 
tests, we perform a convergence analysis indicating the spatial and temporal accuracy of the methods. Let us consider the 
square domain � = (−1, 1)2, where (2.1) admits the following exact solutions

c =
(

cos(πx) cos(π y) sin(2t)
sin(πx) sin(π y) cos(2t)

)
, u =

(− cos(πx) sin(π y) sin(2t)
sin(πx) cos(π y) sin(2t)

)
, p = −1

4
(cos(2πx) + cos(2π y)) sin2(2t),

and ω = √
μ curl u. For sake of this first convergence test, we assume μ = ρ = 1, σ is the identity matrix, we impose 

F = c + f , G = c + g , whereas boundary and initial conditions are now non-homogeneous, and the data in (2.2) are set 
according to the exact solutions above. Also the source and forcing terms g, f are computed using these exact solutions 
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Table 1
Accuracy test. Errors with respect to manufactured exact solutions, convergence rates, and iteration count 
until convergence (with a residual tolerance of 1e-6), for two different strategies solving the ADR-Brinkman 
coupled problem, either with Algorithm 1 (B1-ADR1) solver based on (2.4) (where Iter denotes the number 
of Newton steps to converge in the monolithic ADR solver), or Algorithm 2 (B2-ADR2) based on formulation 
from (2.5) (where Iter stands for the required reaction step sub-iterations). The iteration count in the bottom 
table refers to average number of steps.

Space accuracy
Dof e(c) rate e(u) rate e(ω) rate e(p) rate Iter
Algorithm 1 (B1-ADR1)
51 1.3240 – 5.6127 – 22.3124 – 1.5630 – 5
163 0.9662 0.4542 4.0102 0.4849 17.2105 0.3742 0.9481 0.7215 6
579 0.5177 0.9002 2.1811 0.8786 9.5741 0.8439 0.4777 0.9894 5
2179 0.2553 1.0197 1.1136 0.9695 4.9105 0.9591 0.2537 0.9772 6
8451 0.1274 0.9834 0.5599 0.9924 2.4655 0.9702 0.1304 0.9828 6
33283 0.0617 0.9845 0.2804 0.9981 1.2361 0.9891 0.0664 0.9574 6
132099 0.0315 0.9776 0.1404 0.9976 0.6117 0.9953 0.0341 0.9599 6
526339 0.0157 1.0002 0.0716 0.9701 0.3058 0.9987 0.0180 0.9617 7

Algorithm 2 (B2-ADR2)
36 16.8527 – 5.6124 – 22.3284 – 2.3027 – 8
100 14.1156 0.2556 4.0105 0.4848 17.2265 0.3742 1.1871 0.9558 5
324 7.3737 0.9368 2.1812 0.8786 9.5974 0.8439 1.1215 0.0819 5
1156 3.7222 0.9862 1.1139 0.9694 4.9365 0.9591 0.5807 0.9496 6
4356 1.8655 0.9965 0.5602 0.9416 2.4860 0.9896 0.2933 0.9853 6
16900 0.9333 0.9991 0.2827 0.9863 1.2452 0.9974 0.1470 0.9958 5
66564 0.4667 0.9997 0.1488 0.9321 0.6229 0.9993 0.0736 0.9987 4
264196 0.2333 0.9999 0.1644 0.9557 0.3114 0.9998 0.0368 0.9991 4

Time accuracy
�t E(χ) rate Iter E(χ ) rate Iter

Algorithm 1 (B1-ADR1) Algorithm 2 (B2-ADR2)
1 28.4456 – 6.1 32.8502 – 5.8
0.1 16.3242 0.6877 5.5 20.5543 0.7796 5.6
0.01 8.2311 0.9425 6.2 10.3370 0.9137 5.6
0.001 4.2832 0.9203 6.2 5.6941 0.9426 5.8
0.0001 2.1655 0.9849 6.1 2.3681 0.9832 5.8

in combination with (2.1). The experimental mesh convergence analysis is done by successively refining an initial coarse 
triangular mesh and computing individual errors between the numerical solution produced with the finite element methods 
defined in Section 3 and the exact solution projected on each refinement level (these errors are denoted by e(·) and are 
measured in their natural norms, at the final time T = 1, and employing a timestep of �t = 1E −4). The convergence history 
displayed in Table 1 confirms the O (h)-accuracy expected by the used spaces characterising each finite element formulation. 
Likewise, an asymptotic O (�t) convergence rate is obtained for the time discretisation, assessed by fixing a refined mesh of 
size h = √

2/400 and considering accumulative errors (in the energy norm E(χ ) = [�t
∑ |χn

h − χ(tn)|2]1/2) on successively 
smaller timesteps. The errors themselves are larger for the second partitioned coupling (B2), but the convergence orders 
remain essentially the same.

5.1. Double-diffusion in porous cavities

We now perform a series of computations focused on a doubly-diffusive model governing the interaction between the 
concentration of brine (field c1), temperature (encoded in c2), and immiscible flow in saturated porous media. A similar 
study can be found in [11,31]. The problem under consideration takes place in a porous square cavity � = (0, 1)2 filled 
with a Newtonian fluid of velocity, vorticity, and pressure (u, ω, p). The left and right walls are maintained at different uni-
form temperatures and concentrations respectively cleft

2 = cleft
1 = 0 and cright

2 = cright
1 = 1. The horizontal walls are assumed 

adiabatic and insulated (that is, no-flux boundary conditions are set for the ADR system). Slip velocity conditions (i.e., zero 
normal velocities) and zero vorticity are imposed everywhere on the boundary, and the coupled system adopts the form 
(2.1) where diffusion, reaction, permeability, and forcing terms are defined as

D(c) = diag((Le Pr)−1, Rk Pr−1), G(c) = 0, σ = 1

Da
, F (c) = Gr(c2 + Nc1)g,

respectively. The particular structure of the problem implies that the buoyancy term N is a measure of the coupling strength 
between the flow and the ADR equations. Notice that for a given velocity, the ADR equations are now linear and the 
associated errors would be more easily tractable to the (B1-ADR2) splitting method at hand.

In order to investigate the robustness of the proposed (B1-ADR2) splitting method with respect to the coupling strength, 
we fix the parameters Le = 10, μ = � = 1, Da = 1E-3, Rk = 1, Pr = 0.71, ε = 0.5, Ra = 100, Gr = Ra/(PrDa), we use a 
timestep �t = 1E-3 and a structured grid of meshsize h = 1/100, and let the buoyancy term N vary. By χMONO

h and χ SPLIT
h

we will denote the finite element solution (at the final time T = 0.5) generated by the fully monolithic approach, and the 
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Fig. 5.1. Example 1A. Double diffusion in a porous cavity, 2D case. Approximate solutions at the final time (brine concentration, temperature, pressure, 
velocity components, and vorticity). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 5.2. Example 1A. Evolution of the norm of the solution χh in the double diffusion problem with high buoyancy N = 10, using both the monolithic and 
the splitting method (B1-ADR2) (left panel). On the right we plot the evolution of the error between the monolithic and splitting solutions, e(χ).

operator splitting method (B1-ADR2), respectively. A comparison is then performed in terms of the evolution of global errors 
defined as the L2-norm of the difference between the two solutions e(χ ) = ‖χMONO

h − χ SPLIT
h ‖, where the approximation 

produced by the monolithic method is considered as a reference solution. In Fig. 5.2 we report the temporal evolution 
of e(χ) for different values of the buoyancy N ∈ {0, 2, 5, 10}. As N increases, the error grows, implying that the coupling 
strength affects substantially the quality of the solution generated by the segregated solver. For reference we also depict 
each individual field of the numerical solution generated with the splitting method, shown at the final time T = 0.5, in 
Fig. 5.1.

The results of the finite element model proposed are compared with published results on the purely thermal problem 
(decoupled thermal and mass N = 0). Consider the square domain � = (0, 1)2 and set the boundary conditions as:

c1 = c2 = 1 : x = 0, c1 = c2 = 0 : x = 1, u = 0 : ∂�.

We fix the parameters N = 0, Le = 10, μ = � = 1, Rk = 1, Pr = 0.71, ε = 0.5, Ra = 100, Gr = Ra/(PrDa) and let vary 
Da ∈ {10−1, 10−3, 10−5} and Ra ∈ {100, 200}. The comparisons are based on the average Nusselt and Sherwood numbers:
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Table 1
Example 1A. Average Nusselt and Sherwood numbers Nu and Sh obtained with 
the (B1-ADR2) splitting in the case of decoupled mass and heat transfer processes 
(N = 0, Le = 10) and comparison against reference results published in Shao et al. 
[31].

Da Ra Reference Nu Computed Nu Reference Sh Computed Sh
10−1 100 1.52 1.52 5.56 5.60

200 2.07 2.10 7.32 7.50
10−3 100 2.96 3.01 12.33 11.90

200 4.43 4.64 17.58 16.57
10−5 100 3.11 3.13 13.40 13.25

200 4.96 5.01 19.52 19.25

Table 2
Example 1A. Norm of the vorticity and velocity of the computed solution and of the 
errors computed against a monolithic solution, for different values of the viscosity 
coefficient.

μ 1E − 15 1E − 10 1E − 5 1
‖uh − u∗

h‖H(div;�) 6.7914E-06 1.3008E-11 4.6569E-12 3.5855E-12
‖uh‖H(div;�) 21.0725 21.0725 21.0725 19.6517
‖|ωh − ω∗

h‖|1,μ 5.4204E-10 1.1633E-09 3.8491E-10 1.0258E-09
‖|ωh‖|1,μ 219.1310 219.1316 222.8685 2208.28

Nu = −
1∫

0

∂c1

∂x
|x=0 dy, Sh = −

1∫
0

∂c2

∂x
|x=0 dy. (5.1)

The (B1-ADR2) scheme is used on a regular mesh containing 20000 triangles, considering a timestep of �t = 0.01 and the 
system is run until T = 2. The computed numbers are collected in Table 1.

In addition, we assess the robustness of the method with respect to the fluid viscosity. This is performed by taking N = 0
and considering a range of viscosity values μ = � ∈ {1E-15, 1E-10, 1E-5, 1}, where the first one corresponds to the Darcy 
limit. In all cases the computations are stable and the velocity and vorticity norms remain of the same order of magnitude. 
This can be evidenced from Table 2, where we also show some relevant errors when comparing the approximations against 
a reference solution (generated with the monolithic method and denoted with the superscript ∗) at the final time T = 0.5.

We also carry out a simulation of double-diffusion-driven natural convection in a porous 3D enclosure. The problem 
setting follows [22], and we reuse most of the parameters from the 2D computation, except for Ra = 1E+4 and N = 1. The 
structured tetrahedral mesh discretising the domain � = (0, 0.75)3 consists of 295488 elements and 50653 vertices, and we 
employ a fixed timestep of �t = 1E-3. A portray of the generated solutions (using Algorithm 2 and the solver (B2-ADR2)) is 
presented in Fig. 5.3, indicating well-resolved profiles and absence of spurious oscillations.

5.2. Exothermic reaction–diffusion fronts in porous media

Let us now consider a rectangular domain � = (0, L) × (0, H) and endow (2.1) with the following specification of diffu-
sion, reaction, permeability and forcing terms, respectively:

D(c) = diag(1, Le), G(c) = Da f (c1)(−1,1)T, σ = 1

Da
, F (c) = (γT − c1)g, (5.2)

where f (c1) = 36c1(κ + 7c1)(1 − c1)
2, κ = 1 and g = (0, −1)T. Denoting c1 and c2 respectively as concentration of solutal 

and temperature inside the fluid, the system defined by (2.1) and (5.2) represents the dynamics of a two-dimensional 
porous medium in the presence of gravity (along the stream-wise direction), in which solutal and thermal densities have a 
competing behaviour. Let us consider initial concentrations of solutal and high temperature near the top of the rectangular 
domain

c0
i (x, y) =

{
0.999 + ζi(0.001) if H − ε ≤ y ≤ H,

0 otherwise
, i = 1,2,

where ζ1, ζ2 are random variables uniformly distributed in the interval [0, 1]. The resulting chemical front moves downwards 
invading the fresh reactants. Instabilities result from the competition between solutal and thermal effects through the kinetic 
term f (c1) and the buoyancy term (γT − c1)g. Downward travelling fronts are buoyantly unstable and develop solutal 
density fingers in time, as evidenced in Fig. 5.4. Model and numerical parameters are given as H = 1000, L = 2000, �t = 40, 
T = 8000, Le = 8, Da = 0.001, γT = 5.

Because the diffusion matrix is constant and the reaction term is highly nonlinear, we numerically solve this problem 
using the sub-splitting for the ADR problem described in Section 4.2 leading to the global (B1-ADR2) solver.
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Fig. 5.3. Example 1B. Double diffusion in a porous enclosure, 3D case. Approximate solutions at the final time (brine concentration, temperature, pressure, 
velocity streamlines, velocity magnitude, and vorticity magnitude). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 5.4. Example 2A. Exothermic fingers within porous media. Snapshots of concentration c1 at different times. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

The domain is discretised into 26848 elements with 13675 vertices. The number of degrees of freedom for the Brinkman 
problem is 81045, while for the ADR equations is 27350. In Fig. 5.5 we report on the CPU times for solving the Brinkman-
ADR problem defined by (5.2) using the (B1-ADR2) solver with the inner splitting of the ADR problem into a pure advection–
diffusion phase and into a pure reaction phase (ADR2). We notice that the computational cost of the nonlinear, pure reaction 
phase is much higher than that of the linear advection–diffusion phase. As a matter of fact, the rate of convergence of the 
Newton–Raphson iterative procedure to solve the former is only linear in the sense that ‖cn+1,k+1

h − cn+1,k
h ‖L2(�) ≈ 1E-k

(i.e. to reach k digits of precision in the solution of the pure reaction problem approximately k Newton–Raphson iterations 
are needed), as shown in Fig. 5.5. The evolution of the norms of the concentration, gradient of the concentration, velocity 
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Fig. 5.5. Example 2A. Evolution of the required CPU time for the solution of the Brinkman problem using (B1) and for the ADR problem using the sub-
splitting into a pure Advection–Diffusion phase and a pure Reaction phase (ADR2) at each time step. Number of Newton–Raphson iteration needed to reach 
convergence in the pure Reaction phase with a fixed tolerance tol = 1e − 10. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

and vorticity vector are shown in Fig. 5.6. In correspondence with the developing of finger instabilities, there is a peak in 
‖∇ch‖L2(�) and a subsequent decay towards a spatially homogeneous configuration.

The effects of modifying the size ratio (typically on the wavenumber of the solutions) are observed in the wide fingers 
displayed in Fig. 5.7.

5.3. Bioconvection of oxytactic bacteria

For our next round of simulations, let us consider a rectangular box where both bacteria and oxygen coexist within a 
porous array of fixed particles, filled with an incompressible fluid. After removing the top lid of the box, an interaction 
between bacteria and the diffusion of oxygen into the liquid onsets the formation of high bacterial concentrations moving 
towards the bottom of the box. As proposed in [17], an adequate model for this phenomenon is (2.1) with a cross-diffusion 
term, where we identify the concentration of bacteria with the field c1 and that of oxygen with c2. The diffusion, reaction, 
and remaining concentration-dependent coefficients are

D(c) =
(

D1 −αr(c2)c1
0 D2

)
, G(c) = β r(c2)

(
0

−1

)
, σ = 1

Sc
, F (c) = γ c1g,

where r(c2) = 1

2

⎛⎜⎝1 + c2 − c∗
2√

(c2 − c∗
2)2 + ε2

⎞⎟⎠ and g = (0, −1)T.

It is known (cf. [17]) that for suitable parameters, the solution of the ADR problem c1, c2 converges to a steady-state 
solution (homogeneous in x) of the following system:

�c1 = α∇ · [c1r(c2)∇c2], δ�c2 = βr(c2)c1,

where δ = D2/D1. Let us consider the domain � = [0, 2] × [0, 1], along with the initial conditions

c0
1(x, y) =

{
1 if y ≥ 0.501 − 0.01 sin((x − 0.5)π),

0.5 otherwise
, c0

2(x, y) = 1.

Fixing the parameters β = 10, δ = 1, γ = 418 and Sc = 7700, and varying α leads to such a quasi-stationary solution. The 
splitting (B1-ADR1) with fully implicit treatment of the ADR system, described in Algorithm 1, is run until convergence 
to a steady-state solution, using �t = 1E-3. The vertical profiles of the cell c1 density and oxygen c2 at t = 0.22 for α =
{1, 2, 5.952} are shown in Fig. 5.8.

The increase in the value of α (with β and δ fixed) indicates that the directed cell swimming increases relative to the 
diffusive swimming. Thus, as α increases, the cell density near the surface increases, the cells vacate the lower regions of 
the chamber more rapidly, and less overall oxygen consumption occurs in these regions. These results are in qualitative 
agreement with [23, Figure 7].
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Fig. 5.6. Example 2A. Evolution of the norms of concentration vector ‖ch‖L2(�) , of the gradient ‖∇ch‖L2(�) of the velocity vector ‖uh‖H(div;�) and the 
vorticity ‖ |ω‖ |1,μ .

Fig. 5.7. Example 2B. Exothermic fingers within porous media. Snapshots of concentration c1 and velocity streamlines computed at different time steps. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.8. Example 3A. Vertical profiles of (left) cell density c1,h and (right) oxygen c2,h at t = 0.22 for β = 10, δ = 1, γ = 418, Sc = 7700, and α = 1, 2, 5.952. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5.9. Example 3A. Plot of the (rescaled) norm of the solution χh over time (left) and number of Newton–Raphson iterations in the solution of the 
monolithic scheme (ADR1) (right).

Fig. 5.10. Example 3A. Snapshots at mid (top) and advanced (bottom) times of cell density, oxygen concentration, velocity magnitude, vorticity, and pressure. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.11. Example 3A. Patterns generated by the bacterial chemotaxis towards oxygen concentration on a domain with modified aspect ration. Four snap-
shots of the obtained solutions at different times are presented. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

If we assign the model parameters α = 10, β = 10, γ = 1000, δ = 5 and Sc = 500, the solution of the ADR equations 
shows bioconvection patterns evolving in time. At around t = 0.2 the solution starts developing instabilities, at t = 0.25 a 
drop of bacterial concentration c1 starts falling down and hits the bottom of the chamber at t = 0.3. In Fig. 5.9 (left) we 
report the scaled norm of the solution ‖χh‖2. It is evident that ‖χh‖2 has a peak, which is in correspondence to the devel-
opment of solution instabilities due to spatial inhomogeneity. In Fig. 5.9 (right) we show the number of Newton–Raphson 
iterations to reach a solution of the ADR monolithic system using the (ADR1) solver, within a tolerance of tol = 1E-13. 
We can observe an increase of the number of iterations at the onset of instabilities generated by the strongly nonlinear 
behaviour of the system.

Snapshots of the numerical solutions obtained with the splitting method (B1-ADR1) are displayed in Fig. 5.10. Even if 
the oxygen distribution does not show a very marked gradient in the x-direction, the vorticity plots (bottom centre panels) 
indicate a high flow recirculation at the centre of the domain. We also stress that modifying the aspect ratio of the box 
influences the onset of fingering phenomena in the system, as clearly seen from Fig. 5.11.

Another set of simulations (referred to as Example 3B), is performed, now on a 3D setting. We consider a cylindrical 
geometry of radius 0.5 and height 0.75, discretised into a tetrahedral mesh of 169392 cells and 29109 points. The con-
figuration of the governing equations and specification of constant and variable coefficients is given as follows: α = 0.25, 
β = 1.5, γ = 1500, D1 = 0.005, D2 = 0.4, S = 7700, σ = S−1 × 1 E+6, s� = 0.3, μ = 2. A fixed timestep of �t = 5 E-4 is 
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Fig. 5.12. Example 3B. Snapshots at three instances of cell density (left), velocity patterns and vorticity magnitude (middle columns), and pressure distribu-
tion (right panels). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

used, and we assess the capabilities of two different coupling methods based on the split Brinkman solvers defined by (2.4)
(B1) and (2.5) (B2), respectively. For the first coupling (B1), the solve involves the preliminary assembly of the Brinkman 
system (arising from a finite element discretisation using lowest order Raviart–Thomas approximation of velocity, first de-
gree Nédélec elements for vorticity, and piecewise constants for pressure) representing 678020 degrees of freedom, and 
the assembly of the ADR equations, where the piecewise linear approximation of bacteria and oxygen concentrations leads 
to a system of 58218 unknowns. The second coupling strategy (B2) has a Brinkman solve split into a vorticity matrix of 
size 193724 (also using Nédélec finite elements), a pressure solution with 29109 degrees of freedom, and a matrix-vector 
multiplication to project the reconstructed velocity on the Raviart–Thomas space. As a reference, let us point out that the 
monolithic solver requires the assembly and solution (at each Newton step) of a system with 736238 degrees of freedom.

We simulate the evolution of the system starting from an initial uniform oxygen concentration c2 = 1 and an initial 
distribution of bacteria packed in a ball of radius 0.2 and placed near the top of the vessel. Snapshots of the concentration 
of bacteria and the associated flow patterns, computed with the first staggered solution method (B1-ADR1), are portrayed in 
Fig. 5.12. We observe that as the bacteria propagate downwards, the velocity and vorticity fields indicate recirculating zones 
following the high gradients of c1, whereas the pressure exhibits smooth transitions from high to low values on the bottom 
and top of the domain, respectively. As soon as the high bacteria concentration reaches the bottom of the vessel (occurring 
approximately at t = 0.2), the dynamics of the system implies a slightly weaker coupling between flow and transport. This 
is particularly noticed in the top right plot of Fig. 5.13, where the CPU times for assembly and solution of the Brinkman 
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Fig. 5.13. Example 3B. Evolution of the required CPU time (adimensional units) for the solution of the flow and transport problems at each time step (solid 
and dashed lines, respectively), for the first (B1-ADR1) and second (B2-ADR1) splitting algorithms (top left and top right plots, respectively). The bottom 
panels show the evolution of the bacteria concentration, oxygen, and vorticity magnitude on a single point near the domain centre, using also splitting (B2) 
with and without velocity projection.

and ADR systems displays a slight step down happening around t = 0.2. The timings reported in the top panels of the 
figure encompass the RHS assembly and solution for the Brinkman equations, and the assembly of the stiffness matrix and 
solution of the ADR equations. On top of these values, the initial assembly of the stiffness matrix of the Brinkman problem 
and the RHS of the ADR equations represents an average of additional 124.91 time units for the first partitioned solver, 
and 28.31 time units for the second decoupling strategy. In general, the CPU time for the flow solution is roughly half that 
for the transport. We also observe that for the second coupling (B2) the CPU usage for the total solution is approximately 
75% lower than the one in the first coupling. The second row of Fig. 5.13 presents the history of bacteria concentration, 
oxygen quantity, and vorticity magnitude computed on the point (x0, y0, z0) = (0.6, 0.6, 0.6), indicating that the solution 
itself differs from one coupling to the other. As the simulation was performed using lowest-order elements, we show the 
transients obtained with the second Brinkman splitting with and without additional projection of the velocity. In any case, 
the splitting (B2) produces a slower decay of the bacteria concentration and vorticity fronts, but the velocity projection 
generates profiles closer to those obtained with splitting (B1).

6. Concluding remarks

In this paper we have presented a set of coupling strategies for the partitioned solution of advection–reaction–diffusion 
equations interacting within viscous flows in porous media governed by Brinkman equations in their velocity–vorticity–
pressure formulation. The flow equations follow a discretisation with, either a family of RT0 − ND1 − P0 finite elements 
(encoded in the (B1) solver), or via a split between two elliptic solvers for vorticity and pressure plus a postprocessing yield-
ing velocity (referred to as the (B2) solver). In turn, the ADR system is solved with a primal finite element method using 
piecewise linear approximations of the species concentration, and a splitting of reaction and diffusion steps is conducted 
in different ways, according to the coupling strength exhibited by each particular application. Both accuracy and robustness 
of the proposed schemes have been demonstrated by means of several numerical tests, involving bioconvection of oxytactic 
bacteria and doubly-diffusive viscous flows in porous media. A set of comparisons between different coupling strategies 
has been carried out, and quantified in terms of memory usage, iteration count, speed of calculation, and dynamics of the 
energy norm in the system. These examples convey that split-based formulations are substantially advantageous for the 
family of problems at hand. Further extensions of this work include ADR systems where the diffusion depends on the strain 
rate, and the generalisation of Brinkman equations to linear and nonlinear poroelasticity describing flow within deformable 
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porous media, and for which a large range of applications is readily envisaged. In terms of numerical approximations, we 
also foresee the incorporation of conservative schemes for flow and transport in the spirit of the recent contributions [10,
33,34].
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