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Myocarditis is a general set of mechanisms that manifest themselves into the inflammation
of the heart muscle. In 2017, more than 3 million people were affected by this disease
worldwide, causing about 47,000 deaths. Many aspects of the origin of this disease are
well known, but several important questions regarding the disease remain open. One of
them is why some patients develop a significantly localised inflammation while others
develop a much more diffuse inflammation, reaching across large portions of the heart.
Furthermore, the specific role of the pathogenic agent that causes inflammation as well as
the interaction with the immune system in the progression of the disease are still under
discussion. Providing answers to these crucial questions can have an important impact on
patient treatment. In this scenario, computational methods can aid specialists to
understand better the relationships between pathogens and the immune system and
elucidate why some patients develop diffuse myocarditis. This paper alters a recently
developed model to study the myocardial oedema formation in acute infectious
myocarditis. The model describes the finite deformation regime using partial differential
equations to represent tissue displacement, fluid pressure, fluid phase, and the
concentrations of pathogens and leukocytes. A sensitivity analysis was performed to
understand better the influence of the most relevant model parameters on the disease
dynamics. The results showed that the poroelastic model could reproduce local and
diffuse myocarditis dynamics in simplified and complex geometrical domains.

Keywords: myocarditis, oedema formation, computational modelling, computational immunology, large-strain
poroelasticity

1 INTRODUCTION

Inflammation or inflammatory process is a direct response of the immune system to invaders, also
called pathogens. When the pathogen breaks our first barrier of defence, formed by the tissue and
mucous, and enters the tissue, it begins to propagate through a mechanism that favours its rapid
replication (in the case of viruses) or its reproduction (in the case of bacteria). The innate immune
system will be ready to refrain from such replication/reproduction. Some cells that compose them,
such as leukocytes, can detect the presence of pathogens using receptors on their surface. These
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receptors can recognise the presence of substances that are not
naturally present in the body. Once the invasion is detected, the
leukocyte start the production of pro-inflammatory cytokines to
recruit more cells to fight against the pathogen. The pro-
inflammatory cytokines play distinct roles. For example, some
of them act as a chemoattractant, recruiting more cells to the site
where the pathogen was found. Other pro-inflammatory
cytokines facilitate the migration of leukocyte from the
bloodstream, where most of them are located, to the tissue by
increasing the permeability of blood vessels. However, this
increased permeability allows also plasma to leave the
bloodstream. This process favours an accumulation of plasma
and interstitial fluid in the region, characterising local oedema.

The formation of oedema on the tissue can impact the
functionality of an organ. For example, myocarditis has been
associated with SARS-CoV-2 respiratory infection (Luetkens
et al., 2020; Sala et al., 2020). In this disease, the inflammation
of the myocardium tissue can reduce the capacity of the heart to
pump blood as well as can cause arrhythmia, i.e., irregularities in
the heartbeat. Myocarditis can be caused not only by SARS-CoV-
2 but also by other pathogens (infectious myocarditis), allergens
(immune-mediated myocarditis), and drugs (toxic myocarditis)
(Caforio et al., 2013). Although multiple agents can cause
myocarditis, viral infections are most common (Caforio et al.,
2013). The literature reports that the number of myocarditis cases
in 2017 was 3,071,000, which represents an increase of about 60%
from 1990 (Wang et al., 2021). The disease caused about 47,000
deaths in 2017, against about 27,000 in 1990 (Wang et al., 2021).
Myocarditis affects individuals of all ages (Wang et al., 2021): its
prevalence is higher in the young (Caforio et al., 2013), but most
of the deaths are observed in elderly individuals (Wang et al.,
2021). Since these numbers were collected before the COVID-19
pandemic, they may increase even more.

Although the causes of myocarditis are clear, there are many
open questions regarding the disease, primarily related to the
reasons that some patients recover, some of them without any
injury in the infected area, while others die (Tschöpe et al., 2020).
Another question is why some patients develop a local
inflammation while others develop a diffuse one. In other
words, for some patients, the inflammation and the associated
oedema are located in a single portion of the myocardium, while
for other patients, they spread across the heart. The role of the
pathogen and the immune system in the progression of the
disease is still under discussion, which in turn impacts the use
of best treatment strategies (Tschöpe et al., 2020).

This paper studies the oedema formation during acute
myocarditis using a poroelastic myocardium model. The
mathematical model is based on the one presented in a
previous work (Barnafi et al., 2021), which developed a robust
and efficient finite element formulation and preconditioner for its
numerical solution. In the present work, we focus on a sensitivity
analysis of the model parameters to identify those that can
reproduce the formation of local or diffuse myocardial
oedema. Numerical studies are presented for a one-
dimensional case and a left ventricular geometry.

Mathematical models for describing myocarditis dynamics are
rare in the literature. van der Vegt et al. (2022) proposed a

mathematical model to represent autoimmune myocarditis and
the effects of immune checkpoint inhibitors on the development
of the disease. Their results show the importance of the presence
of immune checkpoint inhibitors to the development of
autoimmune myocarditis. This work differs from van der Vegt
et al. (2022) in many aspects, starting with its focus on infectious
myocarditis. Models for Interstitial fluid pressure (IFP) dynamics
can be found in the literature (Phipps and Kohandel, 2011;
Cattaneo and Zunino, 2014; Jain et al., 2014). The first
mathematical model that combines IFP dynamics and immune
response was first suggested in our previous studies (Reis et al.,
2016a,b). The classical theory of poroelasticity mechanics of a
fluid-saturated porous media that was first proposed in 1941
(Biot, 1941) has been widely used in several studies to include
tissue deformation (Berger et al., 2016; Selvadurai and Suvorov,
2016; Suvorov and Selvadurai, 2016). Three other works proposed
general models in one spatial dimension (Reis R. F. et al., 2019)
and a two-dimensions (Reis et al., 2018; Reis et al., 2019 RF.) that
couple the immune system response with poroelasticity theory.
The models were used to describe inflammatory oedema
formation by also including the modelling of fluid accumulation.

This work is organised as follows. Section 2 present the
methods, specially the mathematical model used to represent
the formation of oedema and its computational implementation.
Next, Section 3 presents the simulations performed and their
results. Section 4 presents the discussion about the results
obtained. Finally, Section 5 draws our conclusions and plans
for future works.

2 METHODS

In this section we present the mathematical model and numerical
methods used to describe acute myocarditis and the formation of
oedema in cardiac tissue. First, we describe the model
assumptions. Next, the poroelastic component of the model is
presented. Then, pathogen-leukocyte dynamics of the
immunologic system are introduced. Finally, the couplings
between the components of the model are addressed.

2.1 Model Assumptions
This section presents the simplifying hypotheses that guided the
development of the mathematical model. Such simplifications
focus on the mechanisms of oedema formation, a multi-physics
phenomenon involving the coupling of the poroelasticity of the
myocardium and the immune-system dynamics, allowing us to
concentrate on the aspects of either local or diffuse oedema
formation processes.

Oedema occurs when an excessive fluid volume accumulates
in the tissue, both inside and outside the cells. In this study, we
consider when it occurs in the space between cells, i.e., in the
interstitium, and for this reason, it is called interstitial, or
extracellular, oedema. Oedema can result from many distinct
causes, from the use of medications, the final stages of pregnancy,
or as a consequence of diseases. This paper models oedema
caused by an inflammatory process. One characteristic of the
inflammatory process is an increase in capillary permeability
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followed by an increase in capillary filtration. So, the model
considers that corporal fluid balance is affected by an invading
pathogen triggering the inflammatory process. Although the
inflammatory process and its resolution involve many proteins
and cells of the immune system, this paper concentrates on some
innate immune system cells, the leukocytes, i.e., the white blood
cells involved in the defence against pathogens. These types of
cells include macrophages, dendritic cells, neutrophils,
eosinophils, T cells, B cells, and natural killer cells, which can
target many pathogens, such as fungi, viruses, bacteria and large
parasites. In our simplification, we consider that pathogens and
leukocytes are located in a poroelastic medium saturated with
interstitial fluid, representing the living tissue. We also assume
that leukocytes can remove pathogens from the interstitium
using, for example, phagocytosis. We also consider that
pathogens can reproduce/replicate in some way. After
leukocytes remove pathogens from the tissue, they start the
resolution of inflammation, removing all recruited cells from
tissue, i.e., returning tissue to its homeostasis. From the immune
system perspective, the complete resolution of inflammation was
not modelled: the model does not take into account the removal
of leukocytes from tissue.

We also consider that the tissue represents the myocardium,
although the model is general enough to represent other types of
tissues. The active behaviour of the cardiac muscle was not
considered in this work. Likewise, we do not include
electrophysiology or other mechanisms, such as mechanical
interactions between the heart and surrounding tissue/organs.
The main difficulty in dealing with such phenomena in the
present poroelastic model would be the differences in
timescales (Chabiniok et al., 2016). Cardiac electrophysiology
and heart contraction have fast dynamics compared to the slower
timescales of oedema formation, which is the main focus of the
present work.

We have previously considered tissue orthotropy in Barnafi
et al. (2021). In the present study, left ventricular loadings are
substantially simplified in our model due to the timescale of
oedema formation. Here, we consider the myocardium tissue to
be passive. In addition, while myocardial fibre architecture plays a
significant role in other regimes, we decided to adopt a more
straightforward isotropic approach for the present investigation
of oedema formation.

Only part of the heart is modelled, the left ventricle (LV), and
it is assumed that no displacement occurs in its base. Although
not realistic (Pfaller et al., 2019), assuming zero displacements in
the base has been used as typical boundary conditions for
mechanical simulations of the LV (see, e.g., Campos et al.,
2019; Genet et al., 2014; Peirlinck et al., 2019 and the
references therein).

2.2 Poroelastic Component of the Model
Followisng Barnafi et al. (2021), we assume the myocardium
as a poroelastic medium saturated with interstitial fluid where
two species, a non-specific pathogen (cp) and leukocytes (cl),
interact and are transported within the interstitial fluid. Thus,
we consider a domain Ω ⊂ Rd, with d = 1, 3 representing the
volume occupied by a deformable porous structure in its

reference configuration. We denote by n the normal vector
on the boundaries zΩ. A material particle is identified in the
undeformed configuration Ω by its position x, whereas
u: Ω → Rd denotes the displacement field that defines the
new position x + u in the deformed configuration. We denote
by F the deformation gradient tensor given by F = I + Gradu,
where I is the identity tensor. We consider J = detF, and
C � FtF, which is the right Cauchy-Green strain tensor.
Here and in the sequel, the superscript (·)t indicates the
matrix transpose operator. The symbols grad and Grad will
denote the gradient of scalar and vector quantities, taken with
respect to the material coordinates. Similarly, Div and Div are
the divergence operators for vector and tensor fields,
respectively.

The flow through the porous tissue can be described by
Darcy’s law. To describe the poroelastic behaviour of the
tissue, the Biot formulation under the large strain regime is
considered (see, e.g., MacMinn et al., 2016). Let the total stress
be defined by the first Piola-Kirchhoff stress tensor P, which is
given by

P � Peff − αpJF−t, (2.1)
where Peff is the effective stress tensor, α is the Biot-Willis
modulus, and p is the pore fluid pressure. We consider the
neo-Hookean model for the effective stress tensor, which
results in

Peff � μs F − F−t( ) + λs ln J( )F−t, (2.2)
where μs � E

2(1+]) and λs � E ]
(1+])(1−2]) are the Lamé parameters

defined in terms of Young’s modulus (E) and Poisson’s
ratio (]).

We consider the mixture to be saturated, that is, ϕf + ϕs = 1,
where ϕs is the volume fraction of the solid phase. Further, we
also assume that volume changes of the solid constituent are
negligible, since volumetric stiffness of the solid is
substantially smaller than the constituent [a reasonable
assumption for soft living tissues (Zheng et al., 2020)].
Therefore, the following equation is considered

J � 1 + ϕf − ϕ0,

where ϕf − ϕ0 is the nominal porosity exchange in the
reference configuration, and ϕ0 is the initial fluid phase.
Note that this equation accounts for the material
incompressibility of the constituents. It results from
considering constant mass density for both phases (and
nominal solid fraction being constant). However, as
highlighted in MacMinn et al. (2016), this does not restrict
the compression of the skeleton since the pore volume can
change locally, implying modifications in the macroscopic
mass density of the poroelastic material.

The proposed model is composed of five equations. Three of
them define the poroelastic subsystem in terms of the
displacement of the solid u, the fluid pressure p and the
fraction of fluid phase ϕf as follows:

−Div Peff − αpJF−t[ ] � ρsb in Ω × (0, tfinal], (2.3a)
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ρf
D

Dt
ϕf −

1
J
Div ϕfρfJF

−1 κ
μf
F−tgradp⎛⎝ ⎞⎠ � ρfℓ in Ω × (0, tfinal],

(2.3b)
J − ϕf � 1 − ϕ0 in Ω × (0, tfinal], (2.3c)

where α is the Biot-Willis modulus, ρs is the solid phase density, b
represents body forces (which are neglected in this work), ρf is the
fluid phase density, D

Dt represents the material derivative, μf is the
dynamic viscosity, and κ is the hydraulic conductivity tensor
described by κ = κ0I, where κ0 is the absolute permeability. We
remark that κ is defined in the spatial frame, where permeability
measurements are taken (Wirth et al., 2014; Choo, 2018). Finally,
ℓ is a distributed term that considers the exchange of fluid
between the interstitial space, blood capillaries, and lymphatic
capillaries, and is described next.

2.3 Immune System Component of the
Model
To describe the immune system component of the model, we
consider two species transported within the interstitial fluid in the
poroelastic domain. We denote their concentrations by cp and cl
representing pathogens and leukocytes, respectively.

The inflammatory process is characterised by an increase in
capillary permeability followed by an increase in capillary
filtration. According to Scallan et al. (2010), these increases are
manifested both by the reduction in the oncotic reflection
coefficient (σ) and by the increase in the hydraulic
conductivity (Cf). This chain of events is illustrated in the
flowchart in Figure 1. Therefore, the increase in permeability
also leads to an increase in the resulting flow, interstitial volume,
interstitial fluid pressure (p) and lymphatic flow. On the other
hand, the increase of pressure and lymphatic flow results in
negative feedback to the capillary reabsorption flow, tending to
reduce it until the equilibrium is achieved.

An inflammatory reaction is triggered by the immune system
when a pathogen enters the body. The objective is to protect the
infection site against the antigen and control it. This process starts
with the antigen presenting cells (APCs). These cells release pro-
inflammatory cytokines, phagocyte the pathogen, and take it for

presentation to the specialised adaptive cells. This cascade of
events triggers the inflammation process and signals to the
immune system the necessity for more defence cells
(represented by leukocytes) in the infection site. This chain of
events is simplified in our model as the reaction term for
leukocytes rl, given by:

rl � rl ϕf, cp, cl( ) � λplcpcl, (2.4)
where λpl denotes the leukocyte migration rate.

Pathogen reproduction/replication is assumed to be
exponential with a rate of rp. Pathogen decay is due to a
natural decay with rate dp or due to its phagocytosis by a
leukocyte (λlpclcp), resulting in the following reaction term:

rp � rp ϕf, cp, cl( ) � ϕf rp − dp − λlpcl( )cp,� ϕf γp − λlpcl( )cp,
(2.5)

where γp = rp − dp is the resulting pathogen reproduction rate and
λlp is the leukocyte phagocytosis rate.

We consider the dynamics of pathogens (cp) and leukocytes
(cl) written in the material configuration for the coupling with the
poroelastic part and to take into account the mechanical feedback
(Colli Franzone et al., 2016; Choo, 2018). The following equations
are used to describe this:

D

Dt
ϕfcp( ) − 1

J
Div ϕfJF

−1DpF
−tGrad cp( ) � rp in Ω ×(0, tfinal],

(2.6a)
D

Dt
ϕfcl( ) − 1

J
Div ϕfJF

−1DlF
−tGrad cl − χϕfclJF

−1F−tGrad cp( )
� rl in Ω ×(0, tfinal],

(2.6b)
where Dp and Dl are diffusion tensors for pathogens and
leukocytes, respectively; rp and rl are the reaction terms for
pathogens and leukocytes, respectively; and χ is the
chemotaxis coefficient. In particular, we assumed the
pathogens and leukocytes diffusion tensors to be isotropic and
represented byDp = dpI andDl = dlI, respectively, where dp and dl
are the corresponding diffusion coefficients.

FIGURE 1 | Interaction of the species and the poroelastic dynamics for modelling an inflammatory oedema formation. The increase in the pathogen concentration is
responsible for an increase in leukocyte concentration. Leukocytes start the production of cytokines (not shown in the figure), which increases the permeability of the
endothelium. The increase in permeability is manifested by the reduction in the oncotic reflection coefficient (σ) and the increase in hydraulic conductivity (Cf). The
reduction in the oncotic reflection coefficient also reduces the oncotic gradient. The increase in permeability also increases the resulting fluid interstitial exchange by
blood capillaries (capillary flow), interstitial volume, pressure, and lymphatic flow. On the other hand, the increase in pressure and lymphatic flow results in negative
feedback to the resulting capillary flow, tending to reduce it. The increase in leukocytes tends to reduce the presence of pathogens.
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2.4 Coupling Term for Capillary Exchange
The first term of ℓ models the influence of blood capillaries
[denoted by capillary flow in Figure 1) and is based on Starling
equation (Starling, 1896)], whereas the second one represents the
lymphatic flow, based on the Hill equation (Keener and Sneyd,
1998). Therefore, the interstitial fluid exchange term ℓ is given by:

ℓ p, cp( ) � Cf cp( ) pc − p − σ cp( ) πc − πi( )[ ]
− q0 1 + vmax p − p0( )n

knm + p − p0( )n[ ], (2.7)

where

Cf cp( ) � S/V( )Lp0 1 + cbpcp( ), and

σ cp( ) � σ0 1 + cbpcp( )−1.
The remaining coefficients are the following: normal lymph

flow (q0), capillary pressure (pc), oncotic pressure (πc), interstitial
oncotic pressure due to plasma protein (πi), maximum lymph
flow (vmax), half-life pressure for lymphatic flow (km), Hill
coefficient (n), normal interstitial fluid pressure (p0), tissue
wall capillary hydraulic permeability (Lp0), pathogen influence
on permeability (cbp) and area per unit of volume (S/V). It is
worth noting that the oncotic gradient in Eq. 2.7 is represented by
the term σ(πc − πi).

2.5 Initial and Boundary Conditions
To close the system of Eqs 2.3a, 2.3b, 2.3c, 2.6a, and 2.6b, it is
necessary to establish the initial and boundary conditions under
which the problem is defined. Initially, the system will have the
following configuration:

ϕf x, 0( ) � ϕ0, in Ω, cl x, 0( ) � 0.003, in Ω,
cp x, 0( ) � 0.001, in Ωcp, cp x, 0( ) � 0.0, in Ω\Ωcp,

where Ωcp is the region where the infection begins. The following
boundary conditions are considered:

u � 0 on Γbase × 0, tfinal( ], (2.8a)

ϕfJF
−1κ ϕf( )

μf
F−tgrad p · n � 0 on zΩ × 0, tfinal( ],

(2.8b)
Pn � 0 on Σendo × Σepi × 0, tfinal( ], (2.8c)

ϕfJF
−1DpF

−tgrad cp · n � 0 on zΩ × 0, tfinal( ], (2.8d)
ϕfJF

−1DlF
−tgrad cl − χϕfclJF

−1F−tgrad cp[ ]·
n � 0 on zΩ × 0, tfinal( ], (2.8e)

where p0 is a prescribed pressure on the epicardial surface Σepi,
Σendo denotes the endocardial surface, and Γbase denotes the basal
surface of the LV.

2.6 Numerical Implementation
To obtain a numerical approximation of the coupled model
presented in the previous section we used the finite element
method (FEM). The FEniCS software library (Langtangen and
Logg, 2017) was used to obtain the numerical approximation of
the variational formulation of the governing equations. Due to the

nonlinear nature of the model, the Newton-Raphson method was
used for the solution. In particular, the models were discretised
using tetrahedral elements and time-derivatives approximated by
backward Euler’s method using a monolithic approach. A mixed
finite element formulation was used for the numerical
approximation of the fields (u, p, cp, cl, ϕf). In particular, the
pair (u, ϕf) was approximated using the MINI element (Arnold
et al., 1984), quadratic Lagrangian elements were used for
approximating cp and cl, while p was approximated with linear
Lagrangian elements. For the Newton-Raphson iterative
algorithm, a tolerance of 10–6 was used. Computer simulations
were carried out in a personal laptop equipped with an Intel(R)
Core(TM) i7-9750H processor and 16 GB of RAM running on
the Ubuntu Linux 20.04 LTS operating system. The entire code
was written in Python and executed using the following versions
in Python version 3.8.10 and FEniCS library version 2019.2. The
results were post-processed with the Paraview software for
visualisation.

3 RESULTS

This section presents the results obtained by the numerical
solution of the model, divided into dynamics over time, three-
dimensional simulations of oedema formation, and a sensitivity
analysis of the model. The first set of numerical experiments
presents the dynamics of pathogens, leukocytes, pressure, phase
and displacement over time in a one-dimensional domain. The
idea is to understand their dynamics and relationships during
the oedema formation. The second set of numerical
experiments presents the results of the simulations in a

TABLE 1 | Reference parameters values used for experiments in Section 3.

Parameter Description Value (Unit)

E Young modulus 60 (kg/cm s2)
N Poisson coefficient 3.5 × 10–1 (−)
ρf Fluid phase density 1 × 10–3 (kg/cm3)
ρs Solid phase density 2 × 10–3 (kg/cm3)
A Biot modulus 2.5 × 10–1

dp Pathogen diffusion coefficient See Table 2
dl Leukocyte diffusion coefficient See Table 2
Χ Chemotaxis 1 × 10–2 (cm2/d (cell/cm3))
γp Pathogen reproduction rate See Table 2
λlp Phagocytosis rate 1.5 (1/d (cell/cm3))
λpl Leukocytes migration rate See Table 2
πi Interstitial oncotic pressure 10 (mmHg)
πc Capillary oncotic pressure 20 (mmHg)
σ0 Osmotic reflection coefficient 9.1 × 10−1

Lbp Pathogen influence on permeability 1 × 104 (1/(cell/cm3))
Pc Capillary pressure 20 (mmHg)
Lp0 Hydraulic permeability 3.6 × 10–8 (cm/s mmHg)
q0 Normal lymphatic flow 6.82 × 10–5 (1/s)
km Half life of lymphatic flow 6.5 (mmHg)
N Hill coefficient 1
Vmax Max lymphatic flow 200
κ0 Permeability 2.5 × 10–7 (cm2/s mmHg)
μf Dynamic viscosity 1 (cm2/s)
(S/V) Vessel area per volume unit 174 (1/cm)
ϕ0 Initial fluid phase 2 × 10–1
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three-dimensional representation of the LV using a ventricular
geometry segmented from patient-specific images (Warriner
et al., 2018). Finally, the last experiment presented in this
section attempts to identify the impacts of the relevant
model parameters in the output, i.e., in the oedema
formation. To simplify the approach, this analysis was
carried out in a one-dimensional version of the model. For
all the mentioned sets of numerical experiments we present
separate results for local and diffuse myocarditis.

The parameter values used in all simulations are those
presented in Tables 1, 2, which were used to simulate the
local and diffuse myocarditis. The regions containing an initial
concentration of pathogens, responsible for triggering the
inflammatory response and dynamics of the poroelastic model,
were defined as follows: for the one-dimensional simulations,
Ωcp � 3.8≤x≤ 4.2, and for the LV simulations,
Ωcp � (x − 0.13047)2 + (y − 3.05269)2 + (z − 5.5)2 ≤ 0.24. In
addition to that, for the one-dimensional simulations, we
considered a domain Ω = [0, 8] cm, where the following
boundary conditions were considered: u � 0 at x = 0, traction
free at x = 8, and no-flux boundary conditions for cp, cl, and p at x= 8.

3.1 Immune System and Poroelastic
Dynamics Over Time
This section presents the results of the dynamics of pathogens,
leukocytes, pressure, fluid phase, and displacement over the
oedema formation. For the sake of simplicity, these results
were obtained by simulating the model in a one-dimensional
domain. Figure 2 presents the dynamics for local and diffuse
myocarditis. Each figure presents the values of the five
variables of the model over the spatial domain taken at four
different time instants. These time instants are different
because of the distinct nature of local and diffuse
myocarditis. For the same reason, the values of some of the
parameters are different. In particular, the pathogen diffusion
rate (dp), leukocytes migration rate from the bloodstream (λpl),
and pathogen’s reproduction rate (γp) had their values
changed from the reference values (Table 1) to obtain the
diffuse myocarditis pattern. The modified values used in the
simulations are presented in Table 2.

3.2 Myocardial Oedema in the Human Left
Ventricle
This section presents the myocardial oedema in a the human LV,
considering two scenarios: local and diffuse myocarditis. Figures

dp3, 4 present the solution of Eqs 2.3a, 2.3b, 2.3c, 2.6a, and 2.6b
considering a ventricular geometry segmented from patient-
specific images (Warriner et al., 2018). Figure 3 presents the
results of a myocarditis simulation in which oedema stays
localised only in part of the LV. Figure 4 reproduces a
scenario of diffuse myocarditis, i.e., oedema spreads all over
the heart.

Each column of Figures 3, 4 represent one variable of interest:
pathogen concentration, leukocyte concentration, displacement,
pressure and phase. Each line present, in a distinct point in time,
the values of these variables.

3.3 Sensitivity Analysis
An one-at-a-time sensitivity analysis was performed for all
parameters of the model for the 1D case. Figures 5, 6 show, in
each line, the influence of some of the most relevant model
parameters on the dynamics of the local and diffuse
myocarditis, respectively, identified on this analysis to better
highlight the couplings of the model. In Figures 5, 6, we
present the mean values of the model variables over the
one-dimensional spatial domain at each time step.

The sensitivity analysis presented in Figures 5, 6 considered
the following parameters: Young’s modulus (E), pathogen’s
reproduction rate (γp), phagocytosis rate (λlp), and pathogen
diffusion coefficient (dp). These parameters are also related to
critical biological responses depending on their values.
Changes in the value of γp, for example, can be associated
with pathogens with distinct proliferation abilities; changes in
the value of λlp can describe the ability of leukocytes in dealing
with the invading pathogen; whereas changes in E represent
tissues with different stiffness. The sensitivity analysis was
done as follows: all three parameters (E, λlp, and γp) had their
values doubled and halved with respect to the reference value
reported in Table 1, generating three scenarios: one using the
reference value, one using its value doubled and one using its
value halved. For each scenario, all other parameters were kept
with the values described in Table 1.

To study these three scenarios, we assume that pathogens
are responsible for triggering the inflammatory response. This
choice is reasonable, since all the dynamics occur only due to
the presence of pathogens in the system. For this reason, the
instant in which pathogens’ concentration reaches its peak is
used as a reference to collect data from five variables of
interest: pathogen concentration, leukocytes concentration,
pressure field, phase, and tissue displacement field. The
columns have two y-axis, representing two distinct variables
of interest. In the first column, the left y-axis represents the

TABLE 2 | Parameter values used to represent local and diffuse myocarditis for the 1D and 3D simulations.

Parameter Unit Value Diffuse 1D Local 3D Diffuse 3D

Local 1D

dp cm2/d 1 × 10–3 5 × 10–3 5 × 10–4 1 × 10–3

dl cm2/d 5 × 10–2 5 × 10–2 5 × 10–1 3 × 10–2

λpl 1/d (cell/cm3) 2.1 × 10° 1 × 10–1 1.2 × 10–1 5 × 10–2

γp 1/d 9.0 × 10–2 3 × 10–2 9.0 × 10° 6 × 10–2
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pathogen concentration and the right y-axis represents the
leukocytes concentration. In the second column, the left y-axis
represents the pressure in the tissue and the right y-axis

represents the phase. The last column represents the
displacement only, and in all figures, the x-axis
represents time.

FIGURE 2 | Simulation of local (left) and diffuse (right) myocarditis dynamics in a one-dimensional domain using the reference parameter values described in Table 1.
Pathogen concentration, leukocytes concentration, pressure, displacement, and fluid phase fields are presented at different time instants after the onset of infection.
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4 DISCUSSION

Table 2 presents the set of parameters changed to obtain a local or a
diffuse myocarditis during 1D and 3D simulations. We consider a
local myocarditis when a small portion of the tissue presents an
oedema, and a diffuse one if the oedema is not limited to a
single portion of the tissue, spreading across all the domain. For
the 1D case, the values of pathogen diffusion (dp), leukocytes
migration rate (λpl) and pathogen reproduction rate (γp) were
changed, in relation to the local oedema, to obtain a diffuse
oedema. For the 3D case, the values of leukocyte diffusion (dl),
λpl and γp were changed. Observe that the last two parameters
were changed in both 1D and 3D cases. All parameters selected
to be changed in 1D and 3D cases where chosen based on
empirical observations obtained during the sensitivity analysis.
An exhaustive search was not performed but could
systematically find all combinations of parameters that could
give rise to diffuse myocarditis. It is worth highlighting that in
the 1D local myocarditis case, the leukocytes migration rate
(λpl) is higher than in the diffuse myocarditis case. The

difference in these rates can be related to the endothelium,
which works as a physical barrier between the bloodstream and
the tissue. The migration of leukocytes from the bloodstream to
the tissue is the first step to combat the presence of a pathogen.
Failures in the migration mechanism can negatively impact the
inflammatory response and for this reason, has already been
recognised as a target for many diseases (Ley and Reutershan,
2006). Moreover, to reproduce the 1D local myocarditis it was
also necessary to change the value of the pathogen reproduction
rate (γp), adjusting it to be faster than in the case of the diffuse
myocarditis. This setting suggests a pathogen with a faster
reproduction due to its biological characteristics or due to
favourable conditions (facility to enter cells, abundance of
nutrients, optimal temperature, for example). Similar
behaviour was observed in the 3D case.

The left column of Figure 2 shows the local myocarditis
dynamics, where one can observe its local behaviour through
the evolution of pathogen concentration, pressure, and fluid-
phase spatial distributions. After the pathogen enters the tissue
and reproduces/replicates, leukocytes start to grow, causing an

FIGURE 3 | Simulation of local myocarditis in a 3D patient-specific heart geometry using the reference parameter values described in Tables 1, 2 (those from
column Local Myocarditis). The rows present snapshots of the solution at different time instants (7, 10, 30, and 50 days) for each variable (columns).
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increase in the fluid phase and pressure (we set p = 0 to represent
the normal pressure in the tissue), impacting the tissue
displacement. This dynamic is kept, and, after 20 days, the
pathogen concentration achieves its peak. The pathogens do
not spread across all the domain due to their interaction with
the growing concentration of leukocytes. Therefore, pathogens
are restricted to a small region in the centre of the domain. It is
also important to note that the peak of other populations may
occur after 20 days since we focus on presenting a snapshot of the
dynamics when the pathogen achieves its peak value. At time t =
22 days, one can note that the pathogen’s spread is controlled by
the leukocytes, which start to act by reducing the concentration of
the pathogen, and also reflects through the couplings of the model
to the pressure and fluid phase fields. Differently from the local
myocarditis, the right column of Figure 2 shows diffuse
myocarditis formation. Again, the presence of a pathogen in
the tissue starts the same cascade of events. However, due to
differences in parameter values, it is possible to observe that this
time the pathogen spreads across all the domain, achieving both
borders. This process occurs slowly, taking more than 60 days to
occur. After 70 days, the pathogen concentration achieves its

peak. As a result of pathogens located in all points of the domain,
the fluid phase and pressure increase more than their
counterparts in the local myocarditis case.

The literature reports that viral myocarditis in murine is
usually eliminated within 2 weeks following infection (Caforio
et al., 2013). For susceptible murine strains, the inflammation can
persist for several weeks (Caforio et al., 2013). Numerical results,
from a qualitative perspective, were able to reproduce this
behaviour, as Figures 3, 4 show. The first column of Figure 3,
which represents the local myocarditis, shows that the pathogen
was almost eliminated in less than 30 days, although its effect in
the heart persists for more days. In the case of leukocyte
concentration, the population remains constant because we
did not included, for simplification purposes, a natural decay
rate to cl population. In the case of the diffuse myocarditis, its is
possible to observe that a pathogen wave, after 120 days, is still
crossing the LV, recruiting leukocytes to the tissue and impacting
the fluid phase, pressure and displacement.

The first line of Figures 5, 6 present the numerical results for
varying the Young’s modulus (E), i.e., the tissue stiffness. A higher
value indicates a stiffer tissue, i.e., a tissue with a lower capacity to

FIGURE 4 | Simulation of diffuse myocarditis in a 3D patient-specific heart geometry using the reference parameter values described in Tables 1, 2 (those from
column Diffuse Myocarditis 3D). The rows present snapshots of the solution at different time instants (25, 40, 60, and 120 days) for each variable (columns).
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deform and accumulate fluid. As one can observe, a higher value
for E results in small changes in phase and displacement. This
phenomenon is observed in the results of both figures, although it
is more evident in the diffuse myocarditis, where the results
obtained with E = 30 and E = 60 lead to distinct phase and
displacement behaviours. In the case of local myocarditis, the use
of E = 30 or E = 60 produce similar results for phase and
displacement. Pressure achieves about the same peak value for
all values of E in both figures. But in the diffuse myocarditis
(Figure 6) low values of E seems to impact phase and
displacement in the tissue for more days than high values.
Finally, in the local myocarditis, the pathogen’s peak value was
not affected by changes in E, but leukocyte’s peak concentration
was affected. This occurs because an increase in pressure impairs

leukocytes to enter the tissue. In the case of diffuse myocarditis,
both pathogen’s peak value and leukocyte’s peak concentration
were affected.

The second line of Figures 5, 6 present the impacts of
changing the pathogen reproduction rate (γp) in the dynamics
of simulation. An increase in γp can be interpreted as a pathogen
that can reproduce faster. In fact, as the first column of both
figures show, the peak of infection was higher and faster for larger
γp values. Again, a higher pathogen concentration translates into
higher leukocyte concentration since more pathogens in tissue
lead to more leukocytes migrating to it. This faster increase in the
concentration of leukocytes contains the infection quickly,
preventing pathogens from remaining in the tissue long
enough to spread. The pathogen concentration also directly

FIGURE 5 | Local myocarditis: evolution of pathogens and leukocytes concentration, pressure, fluid phase, and displacement over 150 days of simulation for
different parameter sets. Effects of variations on (A) Youngmodulus E (as computed from the Lamé parameters for the neo-Hookean model), (B) pathogen reproduction
rate γp, (C) phagocytosis rate λlp; and (D) pathogens’ diffusion coefficient dp. For each row, three scenarios for the parameter under study are considered: one using the
reference value described in Table 1, one using its value doubled and one using its value halved.
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impacts pressure, phase, and displacement, especially in the local
myocarditis scenario: the higher its concentration, the higher the
impact on these three components. In the case of diffuse
myocarditis, γp significantly affects the duration of the effects
on pressure, phase, and displacement.

In the third line of Figures 5, 6 one can observe how the
simulations are affected by changes in the phagocytosis rate (λlp).
A low λlp value can be related to an ineffective immune system,
e.g., due to immunodeficiency. The diffuse myocarditis scenario is
the only affected: clearly, the concentration of pathogens reaches
a higher peak of infection for smaller values of λlp. The lower
capacity of phagocytosis by leukocytes leads to an increase in the
concentration of pathogens, which in turn induces an increase in
the capillary permeability and allows more fluid to enter the

tissue. This increase in phase is responsible for the slight increase
in pressure. Both events are responsible for the deformation
suffered by the tissue, which is slightly greater for higher
values of λlp. In the case of the local myocarditis, the only
population affected is the leukocytes themselves.

Finally, the last line of Figures 5, 6 show the impact of the
pathogen diffusion rate on the numerical results. The big picture
in both figures are almost the same: if the pathogen can diffuse
faster, it achieves higher concentration than if diffuses slowly. As
a consequence, the leukocyte concentration is higher when the
pathogen concentration is higher. Phase, pressure, and
displacement in tissue are affected as usual.

In summary, our simulations highlight that both mechanical
properties of the tissue, effectiveness of the immune response, and

FIGURE 6 | Diffuse myocarditis: evolution of pathogens and leukocytes concentration, pressure, fluid phase, and displacement over 150 days of simulation for
different parameter sets. The first row (A) shows the effects of Young modulus E (as computed from the Lamé parameters for the neo-Hookean model); the second row
(B) shows the effects of the pathogen reproduction rate γp; the third row (C) shows the effects of the phagocytosis rate λlp; and the last row (D) shows the effects of the
pathogens’ diffusion coefficient dp. For each row, three scenarios for the parameter under study are considered: one using the reference value described in
Table 1, one using its value doubled and one using its value halved.
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pathogen features dictate the dynamics of myocarditis and
oedema formation. In particular, we have observed that small
values of tissue stiffness, E, and the ratios λlp/γp (phagocytosis/
pathogen reproduction) and dl/dp (leukocyte/pathogen mobility)
facilitate the spread of both pathogen and oedema in the heart.

Although the mechanisms behind the formation of the global
oedemawere the same in both 1D and patient-specific geometries, the
pattern formation was very distinct. In 1D, the pathogen could
monotonically increase with time all over the domain. In contrast,
the formation of global oedema in the patient-specific model followed
the propagation of a 3D wave of pathogens that initiates from a small
infected region (the initial condition) and travels throughout the
cardiac tissue until it collides with itself and vanishes. The presence
of pathogens induces the local entry of leukocytes and fluid into the
interstitial space of the tissue. As the wave of pathogens sweeps the
entire heart, we see the formation of global oedema. This pattern
suggests the existence of a non-linear wave of pathogens as typically
observed in complex reaction-diffusionmechanisms. The propagation
of the front of pathogens likely depends on the diffusion and
replication of pathogens. On the other side, the wave tail likely
depends on the diffusion and efficiency of the leukocytes.
However, the sensitivity analysis revealed that other tissue features
could also impact the global oedema formation, such as tissue stiffness.
Althoughwewere able to identify the existence of this non-linear wave
in the formation of global oedema using the new proposed model, its
proper characterisation deserves further analysis in future studies.

We also plan to investigate, in the near future, how the
myocardial fibre-sheet architecture affects oedema formation. In
this case, replacing the neo-Hookean constitutive model used here
with a more realistic one (Holzapfel and Ogden, 2009). This study
has also neglected the effects of cardiac contraction. The relevance of
the contraction of cardiac myocytes in oedema formation also
deserves further attention in future studies, as well as: the
investigation of other constitutive relations for the hydraulic
conductivity; the inclusion of lymphatic sinks for cp and cl;
modification of the model to include leukocyte’s decay as well as
other cells of the immune system, in particular, those related to the
adaptive immune system (T and B cells, antibodies, etc.) as proposed
in Reis et al. (2021); a more detailed description of the complex
porous media (Alves et al., 2019), since here we focused only on the
interstitial space between cells; and a more quantitative validation of
the model against patient-specific data.

5 CONCLUSION

This work has proposed a poroelastic approach for modelling
myocardial oedema in acute myocarditis. The model captured the
phenomenological features that occur during the interaction
between pathogens and the immune system, considering a
saturated poroelastic medium that admits large deformations.
The model consists of a set of coupled equations described in
terms of displacement, fluid pressure, fluid phase, and
concentrations for leukocytes and pathogens. A finite element
method was used for its numerical solution. The model was

successfully used to study the immune system and poroelastic
dynamics over time and the formation of myocardial oedema in a
geometry that represents the human LV obtained from patient-
specific images. Local and diffuse myocarditis were generated in
simplified and complex geometrical domains, such as a patient-
specific model. Sensitivity analysis suggests that both mechanical
properties of the tissue, the effectiveness of the immune response,
and pathogen features dictate the dynamics of myocarditis and
oedema formation. In particular, we have observed that small
values of tissue stiffness and the ratios (phagocytosis/pathogen
reproduction) and (leukocyte/pathogen mobility) facilitate the
spread of pathogen and oedema in the heart. In the patient-
specific model, we identified that the propagation of a non-linear
wave of pathogens was behind the global oedema formation.
Altogether, the results suggest that the new proposed model that
couples tissue poroelasticity with the immune response is a
powerful tool for studying myocarditis and oedema formation.
Of particular interest is the support of mechanistic investigations
of the different dynamics found in local and diffuse myocarditis.
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