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This paper is concerned with the study of pattern formation for an inhomogeneous

Brusselator model with cross-diffusion, modeling an autocatalytic chemical reaction taking

place in a three-dimensional domain. For the spatial discretization of the problem we

develop a novel finite volume element (FVE) method associated to a piecewise linear finite

element approximation of the cross-diffusion system. We study the main properties of the

unique equilibrium of the related dynamical system. A rigorous linear stability analysis

around the spatially homogeneous steady state is provided and we address in detail the

formation of Turing patterns driven by the cross-diffusion effect. In addition we focus on

the spatial accuracy of the FVE method, and a series of numerical simulations confirm the

expected behavior of the solutions. In particular we show that, depending on the spatial

dimension, the magnitude of the cross-diffusion influences the selection of spatial patterns.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

The theory of spatial patterns generation goes back to the pioneering work of Turing [46]. Essentially, one chemical, the

activator, stimulated and enhanced the production of the other chemical, which, in turn, depleted or inhibited the formation

of the activator. The so-called Turing mechanism of pattern formation is onset by a diffusion-induced instability around the

homogeneous steady state, that is, the concentration of the species evolves from an initial near homogeneity into inhomo-

geneous spatial distributions. This typically occurs if the diffusion of the inhibitor is large enough in comparison to that of

the activator. This phenomenon has been reported in the context of the chlorite-iodide-malonic acid (CIMA) reaction [12,35]

(see also [15]). On the other hand, further experimental studies have demonstrated that the cross-diffusion effect can lead to

the formation of spatial and spatiotemporal patterns (see e.g. [47]). This is an interesting phenomenon whose applications

range from biochemical to physical and economical processes. Numerous investigations from the viewpoint of mathematical

and numerical analysis deal with some aspects of these problems, mainly focusing on the one- or two-dimensional case.

In [4], it is shown that the spatial dimension has an important influence on the Turing pattern behavior. In the case when

the wavelength of the Turing pattern is sufficiently (at least two times) larger than the thickness of the medium, three-

dimensional patterns can be simplified to two-dimensional patterns. Otherwise, the three-dimensional patterns may differ

from the well studied two-dimensional case (see [28,30] and the references therein). In this paper we aim at studying to

which extent the spatial dimension influences the pattern behavior. Our analysis differs from the one in [4] in that we con-

sidered Turing patterns affected/induced by cross-diffusion mechanisms. We will focus on an inhomogeneous Brusselator

model (see e.g. [21,36]), here assuming the following form
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∂u1

∂t
− �(D11u1 + D12u2) = −(β + 1)u1 + u2

1u2 + α, (x, t) ∈ ΩT ,

∂u2

∂t
− �(D21u1 + D22u2) = βu1 − u2

1u2, (x, t) ∈ ΩT ,

∂u1

∂η
= ∂u2

∂η
= 0, (x, t) ∈ ΣT ,

u1(x,0) = ψ1(x), u2(x,0) = ψ2(x), x ∈ Ω,

(1.1)

where ΩT := Ω ×(0, T ), ΣT := (∂Ω)×(0, T ) for a fixed T > 0. We take α and β as positive constants, whereas D11 and D22

are the self-diffusion coefficients. The term �(D i ju j) = ∇ · (∇(D i ju j)) takes into account the flux of ui , ∇(D i ju j), induced

by the gradient of species u j . Likewise, D i j is the cross-diffusion coefficient for i �= j. This system arises in the mathematical

modeling of an autocatalytic chemical interaction governed by the following reaction mechanism:

A
k1−→ X, B + X

k2−→ Y + D, 2X + Y
k3−→ 3X, X

k4−→ Products.

Here A and B are the major species, X and Y the intermediate species. The third step is autocatalytic. As in [9], after

employing the following scaled variables

α =
(

k21k3

k34

)
1
2

A, β =
(

k2
k4

)

B, u1 =
(

k3
k4

)
1
2

X, u2 =
(

k3
k4

)
1
2

Y , t̄ = k4t,

and dropping the bar on t , we find that the evolution of u1 and u2 is governed by the ODE system

⎧

⎪

⎨

⎪

⎩

du1

dt
= −(β + 1)u1 + u2

1u2 + α,

du2

dt
= βu1 − u2

1u2.

(1.2)

By introducing the cross-diffusion effect as in [47], system (1.2) leads to (1.1). This system is a suitable prototype for the

study of a larger class of reaction–diffusion systems. By means of a linearized stability analysis, we will first show that

if the parameters satisfy the condition β < min{1 + α2,1 + α2D11−2α
√

D11D22

D22
}, then the cross-diffusion effect gives rise to

the formation of patterns. Then, we focus on the spatial structure of these patterns with the help of a series of numerical

tests.

An important number of contributions have been proposed to treat systems like (1.1) from a numerical perspective, either

considering or not the cross-diffusion effect (see [2,5,6,8,14,18,21,39] for finite differences, finite volumes, spectral and finite

element methods for the spatial discretization). Here, and following [11,27,37], we propose a new finite volume element

(FVE) method for the numerical approximation of the underlying reaction–cross-diffusion system. We do not intend to carry

out a thorough comparison of the performances of the different discretization strategies, but we rather introduce a FVE

formulation because of its natural mass conservation property, and we employ it to study the formation and identification

of spatial patterns.

FVE methods exhibit several advantages over some of the approaches mentioned above. These include the ability of

treating arbitrarily complex geometries, unstructured and anisotropic meshes, a variety of boundary conditions (as robust

finite element methods) and they feature local conservation and front capturing properties inherent mainly to finite volume

methods (and highly desirable in the simulation of population dynamics). The key idea is that a complementary dual (or

adjoint) mesh is introduced and a transfer map permits to rewrite a classical Galerkin formulation as a finite volume method

(that is, in terms of fluxes passing through the faces of the primal elements). In the end, it is possible to reformulate

the discrete problem as a Petrov–Galerkin problem. Related variants are also known as marker and cell methods [20],

generalized difference methods [29], finite volume methods [1], covolume methods [34], box methods [3] or combined

finite volume-finite element methods [24]. These are in general restricted to the two-dimensional case. We stress that

even if in the present contribution we propose a FVE method for the particular inhomogeneous Brusselator system (1.1),

the derivation of the FVE formulation is suitable for a larger class of Turing-type models including e.g. the well-known

Gray–Scott [22], Gierer–Meinhardt [19] or the Schnakenberg [41] equations. In addition, the convergence properties of FVE

methods can be studied rather straightforwardly by recasting the discrete formulation in a classical abstract framework for

nonlinear Petrov–Galerkin problems. Even if a rigorous convergence analysis goes beyond the scope of the paper, we stress

that optimal experimental rates of convergence are observed for both species, in the sense that the observed errors exhibit

the same convergence order as the finite element interpolation operators.

The remainder of this paper is structured as follows. In Section 2 we deduce from the mathematical standpoint, the

role of cross-diffusion in the generation of spatial patterns, and we provide the conditions for these patterns to appear.

A FVE formulation for approximating the governing equations is detailed in Section 3, and some numerical tests including

the study of convergence and formation of spatial patterns are shown in Section 4. Finally, some conclusions are drawn in

Section 5. Proofs of our main results are collected in Appendices A, B and C.
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2. Turing patterns driven by cross-diffusion effects

In this section, we aim to explore the effect of the cross-diffusion on the stationary structure of Brusselator model. We

will first find the conditions under which the positive equilibrium is linearly stable without cross-diffusion but unstable

with cross-diffusion, a well-known phenomenon of cross-diffusion driven instability (see similar studies in [21,43–45]). We

will start by determining the bifurcation point, and then we will investigate the properties of the associated Turing patterns.

2.1. Linear stability analysis

The existence and local stability of an internal equilibrium point u∗ := (u∗
1,u

∗
2) where the two species coexist, depends

on the parameter values. For system (1.1), there is a unique positive equilibrium point (u∗
1,u

∗
2) = (α, β/α) for any positive

constants α and β . We now analyze the local asymptotic stability of the positive equilibrium to (1.1).

Throughout this paper we will denote

G(u) =
(

G1(u)

G2(u)

)

=
(

−(β + 1)u1 + u2
1u2 + α

βu1 − u2
1u2

)

.

The following stability and instability results hold for the positive equilibrium (the proofs are postponed to Appendices A, B

and C, respectively).

Theorem 2.1. In the absence of cross-diffusion effects, that is D12 = D21 = 0, the positive equilibrium point u∗ of (1.1) is locally
asymptotic stable if and only if the model parameters satisfy

β < min

{

1+ α2,1 + α2D11 − 2α
√

D11D22

D22

}

. (2.1)

Theorem 2.1 suggests that the self-diffusion cannot induce instabilities to the positive equilibrium point if and only if

(2.1) is satisfied. Now, we consider the influence of cross-diffusion on the steady states. Namely, we show that when the

cross-diffusion is small, the inhomogeneous steady state of (1.1) does not exist.

Theorem 2.2. Assume that 0� u1(x, t) � K1 , 0� u2(x, t) � K2 for all (x, t) ∈ ΩT . If

D11 >
2K1K2 − β − 1

μ2
,

√

D22

(

D11 − 2K1K2 − β − 1

μ2

)

>
1

2

(

D12 + D21 +
K 2
1 + 2K1K2 + β

μ2

)

, (2.2)

then the system (1.1) has no inhomogeneous steady state.

The above theorem implies that Turing patterns cannot occur provided that the cross-diffusion is small. In what follows

we will find necessary and sufficient conditions for Turing patterns to occur.

Theorem 2.3. Assume that condition (2.1) holds. Then the equilibrium u∗ of (1.1) is unstable if and only if

D12 �
D11D22

D21
or

1

β

[

α2(D11 + D21) + (1− β)D22 + 2α
√

D11D22 − D12D21
]

� D12 <
D11D22

D21
. (2.3)

The above theorems reveal that the cross-diffusion effect is able to destabilize the positive equilibrium, and result in

Turing patterns.

2.2. Turing parameter space

In view of Theorem 2.3, the fulfillment of the following conditions is sufficient for the positive equilibrium point (u∗
1,u

∗
2)

being linearly unstable with respect to the particular case of system (1.1):

(i) β < min{1+ α2,1+ α2D11−2α
√

D11D22

D22
}.

(ii) 1
β
[α2(D11 + D21) + (1− β)D22 + 2α

√
D11D22 − D12D21 ]� D12 .

In the remainder of the paper, the values satisfying the parameter spaces will be set as follows:

α = 6, β = 1, D11 = 0.4, D22 = 2, D21 = 0.02.

For this particular choice, the positive stationary uniform solution is given by
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Fig. 1. Phase plane for model (1.1). Computed trajectories starting from states A(7,0.4), B(8,0.05), C(2,0.3) and reaching the equilibrium (2.4).

(

u∗
1,u

∗
2

)

= (6,0.1667). (2.4)

If no diffusion is considered, problem (1.1) boils down to the dynamical system

du

dt
= G(u),

whose phase diagram is presented in Fig. 1. We show computed trajectories for different initial values of u1(x,0) and

u2(x,0) which converge to the equilibrium state (2.4), given by the intersection of the (nontrivial) nullclines

Gnull
1 (u1) = (β + 1)u1 − α

u2
1

, Gnull
2 (u1) = β

u1
.

As the similar method in [33], we are able to calculate the wavenumber explicitly and determine the pattern selection

by linearizing cross-diffusion around the stationary uniform solution and taking D12 as the Turing bifurcation parameter.

The Turing bifurcation occurs when Re(λ(k)) = 0 at k = kc �= 0, where kc is the critical wavenumber and |k|2 is equivalent

to the eigenvalue μi . From Theorem 2.3, we find that the Turing bifurcation threshold satisfies

D12 = 1

β

[

α2(D11 + D21) + (1− β)D22 + 2α
√

D11D22 − D12D21

]

. (2.5)

Moreover, we have the following wavenumber:

|kc| =

⎧

⎨

⎩

√

−α2D11−(1−β)D22+βD12−α2D21

2(D11D22−D12D21)
, if D12 <

D11D22
D21

,
√

α2D11+(1−β)D22−βD12+α2D21

2(D11D22−D12D21)
, otherwise.

(2.6)

3. Finite volume element approximation

3.1. Weak form of the cross-diffusion system

Multiplying the first two equations of (1.1) by smooth functions v , and w , respectively, and integrating by parts over Ω

yield the following weak formulation of the cross-diffusion system: For 0 < t < T , find u1(t),u2(t) ∈ H1(Ω) such that

∂

∂t

∫

Ω

u1v dx+
∫

Ω

(D11∇u1 + D12∇u2) · ∇v dx =
∫

Ω

(−(β + 1)u1 + u2
1u2 + α

)

v dx, ∀v ∈ H1(Ω),

∂

∂t

∫

Ω

u2w dx+
∫

Ω

(D21∇u1 + D22∇u2) · ∇w dx =
∫

Ω

(

βu1 − u2
1u2

)

w dx, ∀w ∈ H1(Ω), (3.1)

and u1(0) = u1,0 , u2(0) = u2,0 a.e. in Ω . The existence of weak solutions for a class of reaction–diffusion systems covering

this case has been established in [2,13]. Global existence can be proved using the arguments in e.g. [25].
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Fig. 2. Sketch of primal and dual meshes, finite elements and control volumes on a local 2D partition (left) and a single primal tetrahedron split into four

polyhedra Kz (middle). Right: Example of primal and dual meshes (solid and dashed lines, respectively) on a 3D geometry where the primal mesh consists

of Nh = 176 vertices and 594 tetrahedral elements.

3.2. Spatial discretization

Let us assume that Ω is a polyhedral domain and let Th denote a partition of Ω into tetrahedral elements K of diameter

hK satisfying the property of local regularity: There exists C > 0 such that

Ch2K � |K |� h2K ,

for all K ∈ Th . The mesh parameter is h := maxK∈Th {hK } and Nh := {s j: j = 1, . . . ,N} denotes the set of vertices of Th . By

Eh we denote the complete set of faces of Th and E int
h is its restriction to the faces not lying on ∂Ω . Let Vh denote the

standard finite element space of continuous piecewise linear functions to be employed in the approximation of the fields

u1,u2 . That is,

Vh :=
{

v ∈ H1(Ω) ∩ C0(Ω̄): v|K ∈ P1(K ) for all K ∈ Th
}

,

where Pm(K ) denotes the space of polynomial functions of total degree s �m defined on the element K . A semi-discrete

Galerkin finite element method for the approximation of (3.1) reads: For t ∈ (0, T ], find u1,h(t) and u2,h(t) ∈ Vh such that

d

dt
(u1,h, vh)Ω + D11(∇u1,h,∇vh)Ω + D12(∇u2,h,∇vh)Ω = ( fh, vh)Ω , ∀vh ∈ Vh,

d

dt
(u2,h, wh)Ω + D21(∇u1,h,∇wh)Ω + D22(∇u2,h,∇wh)Ω = (gh, wh)Ω , ∀wh ∈ Vh, (3.2)

where (·,·)Ω denotes the inner product in L2(Ω) and fh = −(β +1)u1,h +u2
1,hu2,h +α, gh = βu1,h −u2

1,hu2,h . Under stronger

regularity requirements on u1,u2 it is possible to show that the fully discrete Galerkin scheme is well-posed and convergent

(see [5]). The approximate initial concentrations u1,h(0),u2,h(0) are constructed as the L2 projections of u1,0 and u2,0

onto Vh .

In order to define a FVE formulation associated to (3.2) we introduce a median-based tessellation of Ω formed by joining

the median dual segments of each tetrahedron in Th . Such partition is called dual mesh and its denoted by T ⋆
h . For each

element K ∈ Th we create segments joining its barycenter bK with the midpoints (2D barycenters) mF of each face F ⊂ ∂K ,

forming four polyhedra K z for z in the set of vertices of K , that is, z ∈Nh ∩ K . Then to each vertex s j ∈ Nh , we associate a

so-called control volume K ⋆
j consisting of the union of the polyhedra Ks j sharing the vertex s j (see Fig. 2). We now define

the following finite-dimensional space associated to the dual partition T ⋆
h (which is also quasi-uniform):

V ⋆
h :=

{

v ∈ L2(Ω): v|K ⋆
j
∈ P0

(

K ⋆
j

)

for all K ⋆
j ∈ T

⋆
h

}

.

The primal and dual meshes are related by the transfer operator P : Vh → V ⋆
h (see e.g. [37]) defined by

(Phvh)(x) =
Nh
∑

j=1

vh(s j)χ j(x) for x ∈ Ω,
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where χ j is the characteristic function on the control volume K ⋆
j . To derive the FVE formulation we multiply the first two

equations in (1.1) by Phvh ∈ V ⋆
h and Phwh ∈ V ⋆

h , then integrate by parts over each K ⋆
j ∈ T ⋆

h . We get: For t ∈ (0, T ], find
u1,h(t),u2,h(t) ∈ Vh such that

d

dt
(u1,h,Phvh)Ω − D11

Nh
∑

j=1

vh(s j)

∫

∂K ⋆
j

∇u1,h · n− D12

Nh
∑

j=1

vh(s j)

∫

∂K ⋆
j

∇u2,h · n = ( fh,Phvh)Ω , ∀vh ∈ Vh,

d

dt
(u2,h,Phwh)Ω − D21

Nh
∑

j=1

wh(s j)

∫

∂K ⋆
j

∇u1,h · n− D22

Nh
∑

j=1

wh(s j)

∫

∂K ⋆
j

∇u2,h · n = (gh,Phwh)Ω , ∀wh ∈ Vh,

u1,h(0) = Rhu1,0, u2,h(0) = Rhu2,0,

where Rh : H2(Ω) → Vh is a projection defined by the diffusion operator as follows

Nh
∑

j=1

vh(s j)

∫

∂K ⋆
j

∇(ui −Rhui) · n = 0, ∀vh ∈ Vh, i = 1,2.

The proof of the following lemma can be found in e.g. [27].

Lemma 3.1. For any vh, wh ∈ Vh , the following relation holds

−
Nh
∑

j=1

wh(s j)

∫

∂K ⋆
j

∇vh · n = (∇vh,∇wh)Ω .

This allows us to recast the previous finite volume method as: For t ∈ (0, T ], find u1,h(t), u2,h(t) ∈ Vh such that

d

dt
(u1,h, vh)Ω + D11(∇u1,h,∇vh)Ω + D12(∇u2,h,∇vh)Ω = ( fh,Phvh)Ω , ∀vh ∈ Vh,

d

dt
(u2,h, wh)Ω + D21(∇u1,h,∇wh)Ω + D22(∇u2,h,∇wh)Ω = (gh,Phwh)Ω , ∀wh ∈ Vh.

3.3. Temporal discretization

The evolution in time is performed considering a uniform partition of the interval [0, T ] as [0, . . . , tn, . . . , T ] into

subintervals of size �t . Suitable time integration strategies include Runge–Kutta schemes as in [32,48], Crank–Nicholson

methods [17,42] or local time-stepping [7]. Here we opt for a second order backward difference advancing scheme (BDF2,

see e.g. [23]). The space–time discrete FVE method then reads: For n � 1, given un
1,h and un

2,h , find (un+1
1,h ,un+1

2,h ) such that

for all vh, wh ∈ Vh it holds

(

ũn+1
1,h , vh

)

Ω
+ D11

(

∇un+1
1,h ,∇vh

)

Ω
+ D12

(

∇un+1
2,h ,∇vh

)

Ω
=

(

f nh ,Phvh
)

Ω
,

(

ũn+1
2,h , wh

)

Ω
+ D21

(

∇un+1
1,h ,∇wh

)

Ω
+ D22

(

∇un+1
2,h ,∇wh

)

Ω
=

(

gnh,Phwh
)

Ω
(3.3)

for all vh, wh ∈ Vh , where

ũn+1
i,h := 1

�t

(

3

2
un+1
i,h − 2un

i,h + 1

2
un−1
i,h

)

, i = 1,2,

and the reaction terms are discretized in an explicit manner, i.e. f nh = −(β +1)un
1,h +(un

1,h)
2un

2,h +α, gh = βun
1,h −(un

1,h)
2un

2,h .

In matrix form, (3.3) boils down to

MŨn+1 + KUn+1 = (PF)Un,

where U is the total solution vector, Ũ is the approximation of the time derivative of U, and M,K,P,F are the usual

mass, stiffness, primal-dual projection and reaction matrices, respectively. At each time iteration the resulting linear system

is solved by means of the GMRES method (a tolerance of 1e-7 is used for the L2-norm of the residual), combined with

Schwarz preconditioning (see e.g. [40]).
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Fig. 3. Validation test: Finite volume element approximations of the fields u1 and u2 at the final time T = 0.5 (left and middle, respectively), and example

of a primal and dual mesh.

4. Numerical results

In this section we present results of computational examples using the finite volume element method. Unless otherwise

explicitly specified, all units are considered adimensional.

4.1. Validation test

As numerical validation of the spatial accuracy of our method we first consider a simple auxiliary reaction–diffusion

system given by

∂u1

∂t
− �(D11u1 + D12u2) = D12u2,

∂u2

∂t
− �(D21u1 + D22u2) = 4D21u1,

u1(x, y,0) = cos(2x) + cos(2y), u2(x, y,0) = cos(x) + cos(y), (4.1)

defined on the square (0,2π)2 , and where D11 = D22 = 1, D12 = 1.5, D21 = 0.5. The exact solution is

u1(x, y, t) = exp(−4t)
(

cos(2x) + cos(2y)
)

, u2(x, y, t) = exp(−t)
(

cos(x) + cos(y)
)

,

and zero-flux boundary conditions are used. We evolve system (4.1) until T = 1/2 and the approximate solutions are plotted

in Fig. 3. At a fixed time instant t̃ we compute errors and observed convergence rates defined as

em(u) := |u − uh|m,Ω

|u|m,Ω

, rm(u) := log(em(u)/êm(u))

log(h/ĥ)
,

with m ∈ {0,1}, where em and êm are errors obtained for two consecutively refined meshes of sizes h and ĥ. The spatial

convergence is assessed by considering successively refined primal unstructured meshes of 9, 27, 96, 333, 1265 and 4972

vertices. The error history is displayed in Table 1 and Fig. 4, where we observe convergence rates of O(h) for u1,u2 in the

H1-seminorm and of O(h2) in the L2-norm. These rates are in agreement with theoretical results from e.g. [16].

In what follows we provide a set of numerical tests to study the different patterns arising from (1.1). The computational

domain is now confined to the cube Ω = (0, L)3 . The wavenumber satisfies

k = π(m1/L,m2/L,m3/L), |k| = π

√

(m1/L)2 + (m2/L)2 + (m3/L)2, m1,m2,m3 = 0,1, . . .

and from (2.5) we obtain the Turing bifurcation threshold D12 = 22.2665. Fig. 5(left) depicts the real part of the eigenvalues

Re(λ) versus the norm of the wave vector.

The domain size L is chosen large enough to include several spatial wavelengths. In contrast with ODE-based models,

our results indicate that the spatial dynamics is little affected by initial data (see also [31,49]). The initial solutions are

chosen as small random perturbations of the equilibrium, that is, we set u1(x,0) = rand(x)
3

+ 5.8, u2(x,0) = rand(x)
10

+ 0.13,

for x ∈ Ω , where rand :Ω → [0,1] is a uniform random distribution. Homogeneous Neumann conditions are imposed on all

boundaries. A parallel implementation was performed, specially needed for the three-dimensional tests on fine meshes and

for long time horizons. Our C++ code is based on the Trilinos library2 and employs OpenMPI for the parallel communications

and the Parmetis library [26] for creating the partition of Th (see Fig. 5(right)). We typically use 16 subdomains and run the

simulations on 16 dual-processor nodes, assigning each subdomain to a unique node. The preconditioner is parallelized with

2 http://www.trilinos.sandia.gov.

http://www.trilinos.sandia.gov
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Table 1

Validation test: Convergence histories for the finite volume element method applied to (4.1). The displayed quantities correspond to relative errors and

convergence rates in the L2-norm and H1-seminorm for species u1 , u2 at T = 1.

Nh h e1(u1) r1(u1) e0(u1) r0(u1) e1(u2) r1(u2) e0(u2) r0(u2)

9 3.7922 1.0417e-1 – 7.7254e-1 – 8.6421e-2 − 3.7412e-1

27 2.0847 7.6978e-2 0.5042 1.3049e-1 2.9640 4.7942e-2 0.9821 4.2062e-2 3.6424

96 0.9922 4.1841e-2 0.8212 2.9158e-2 2.0185 2.2313e-2 1.0302 8.2372e-3 2.1962

333 0.4961 2.1628e-2 0.9548 9.0312e-3 1.7958 1.0757e-2 1.0557 2.1504e-3 1.9432

1265 0.2549 1.0694e-2 1.0524 2.3387e-3 2.0188 5.2402e-3 1.0746 4.8176e-4 2.2353

4972 0.1312 5.3102e-3 1.0452 6.1799e-4 1.9870 2.6244e-3 1.0324 8.4301e-5 2.6023

19732 0.0664 2.6260e-3 1.0481 1.4542e-4 2.1536 1.3102e-3 1.0340 3.0172e-5 1.5294

Fig. 4. Validation test: Convergence histories for the finite volume element method applied to (4.1). The displayed quantities correspond to relative errors

and convergence rates in the L2-norm and H1-seminorm for species u1 (left) and u2 (right).

an additive Schwarz domain decomposition strategy [38]. Basically, the global preconditioner is defined by the expression

P−1 =
∑M

k=1 RT P−1
i R , where Pk is the local preconditioner associated to the processor k (typically a local KLU factorization),

M stands for the total number of processors and R is the usual restriction operator to extract part of the global matrix. We

employ one level of overlap among processors.

4.2. Example 1: Mixed patterns on a square and on a cube

We start by studying the behavior of problem (1.1) at the bifurcation point corresponding to D12 = 22.2665. According to

(2.6), we obtain the critical wavenumber |kc| = 3.1741 and we expect patterns to appear. The time evolution of the system

is performed on the square Ω = (0, L)2 for t = 1,10,25. The unstructured primal mesh contains 15364 triangles and 7683

nodes and a (heuristically determined) timestep of �t = 1e− 3 is employed. The same test is done on the cube Ω = (0, L)3 ,
where the computational mesh consists of 43 859 vertices and 241984 tetrahedra. In Fig. 6 we depict the approximate

solutions for both tests, where hexagon-stripe mixtures are displayed. Here stripes and spots coexist both in the square and

in the cube.

4.3. Example 2: Spotted patterns on a square and on a cube

In this example we observe the behavior above the threshold and we choose D12 = 24. For this parameter we obtain the

critical wavenumber |kc| = 3.7249. In Fig. 7 we show the evolution of the spatial patterns on a square Ω = (0, L)2 , also for

times t = 1,10,25, along with the computations performed on the cube Ω = (0, L)3 . Space and time discretizations coincide

with those from Example 1. From Fig. 7 we observe spotted patterns both in the square and in the cube.
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Fig. 5. Left: Examples of the dispersion relation of (1.1) for D12 = 22.2665 (dashed blue), and D12 = 24 (green line). Right: Partition of the actual primal

and dual meshes into 16 non-overlapping subdomains, each color representing a different subdomain. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 2

Example 3: Study of the influence of diffusion coefficients in the stability of the method, measured by the GMRES iteration count (to reach the desired

tolerance), as the meshsize decreases.

Nh D12/D21 = 3 D12/D21 = 44.533 D21/D12 = 48 D21/D12 = 64

2384 5.84 6.21 6.40 7.24

5177 5.99 6.75 6.58 7.18

9636 7.10 7.04 7.09 7.85

18671 6.82 7.85 7.15 7.98

43859 7.42 6.79 6.91 7.25

96378 6.92 6.34 7.33 8.78

4.4. Example 3: Effect of increased cross-diffusion and scalability test

We increase further the cross-diffusion coefficient D12 = 32 and run the same tests as in the previous examples. The re-

sults are collected in Fig. 8. We observe a larger amplitude of the patterns (higher gradients) for both species. The exhibited

patterns are of labyrinthine type in both the square and the cube.

Next we perform a basic sensitivity analysis for the cross-diffusion coefficients. We study the behavior of the average

iteration count for different cross-diffusion ratios as the meshsize decreases (the remaining coefficients are kept constant).

A fixed fine timestep is used in all cases and we simulate the process up to t = 10. From Table 2 it is straightforward to

see that, for cross-diffusion regimes as those analyzed here, the method remains stable (in the sense that the number of

iterations remains approximately constant).

In addition we report on the weak scaling of our reaction–diffusion solver, where the problem size and the multi-

processor count are simultaneously expanded. Ideally, the goal is to achieve constant (or, in practice, slightly increasing)

time-to-solution for larger problems. For this example the cross-diffusion is D12 = 32 and only 100 time steps are used

in each run of the simulation performed on the cube, where we progressively increase the number of processors and

refine the mesh, so that the ratio #dof/#processors is kept approximately constant. The results in Table 3 show the

performance of the solver measured in terms of GMRES iterations to convergence of the linear solver, time per GMRES

solution and CPU time per timestep. We conclude that the chosen preconditioner scales reasonably up to 192 proces-

sors.

4.5. Example 4: Pattern selection on a disk and on a cube

We study the influence of the cross-diffusion on a smaller domain of different shape. A series of simulations are per-

formed on a disk of diameter L = 20, where the primal mesh consists of 4710 elements and 2356 vertices. The Brusselator

system is evolved until the solution reaches inhomogeneous stationary states and we depict in Fig. 9 the results for a varying

cross-diffusion coefficient (only the u1-field is presented). Here is more clearly seen the change of patterns according to the
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Fig. 6. Example 1: Snapshots of the numerical approximation (u1 top, u2 bottom) of the Brusselator system with cross-diffusion D12 = 22.2665. Simulations

performed on a square and on a cube for times t = 1,10,25 (left, middle, right).

cross-diffusion effect. With D12 = 20 we observe that the initial perturbation of the equilibrium vanishes and the solution

reaches the homogeneous equilibrium, whereas the increase of D12 over the threshold yields the formation of spotted and

labyrinthine patterns. The same behavior is evidenced in Fig. 10, where we show the approximate steady state solutions on

a smaller cube Ω = (0,20)3 .
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Fig. 7. Example 2: Snapshots of the numerical approximation (u1 top, u2 bottom) of the Brusselator system with cross-diffusion D12 = 24. Simulations

performed on a square and on a cube for times t = 1,10,25 (left, middle, right).

5. Concluding remarks

In this paper we proposed a finite volume element method for a reaction–cross-diffusion system modeling an autocat-

alytic chemical reaction. The stability of the Brusselator system has been addressed in detail. Experimental convergence

rates were obtained for the FVE approximations and several numerical examples in two and three spatial dimensions verify
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Fig. 8. Example 3: Snapshots of the numerical approximation (u1 top, u2 bottom) of the Brusselator system with cross-diffusion D12 = 32. Simulations

performed on a square and on a cube for times t = 1,10,25 (left, middle, right).

the expected results in terms of behavior of the generated patterns. We have shown that the cross-diffusion effect induces

the formation of patterns via Turing mechanisms, also in the three-dimensional case.

The main limitation of the proposed method is the difficulty of deriving high order spatial approximations, and the

coupling of conforming and nonconforming fields without resorting to complicated strategies as e.g. those in [11]. Other

aspects that are postponed for a following study include the impact of high anisotropy of the medium and robustness
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Table 3

Example 3: Weak scalability of the reaction–diffusion solver, measured by the average iteration count and average CPU time.

Processors GMRES iterations Time per GMRES solution CPU time per timestep

24 6.52 35.21 81.77

48 8.43 39.27 87.45

96 8.71 40.19 113.02

192 8.67 55.04 125.40

Fig. 9. Example 4: FVE approximation of species u1 for cross-diffusion D12 = 22.2665,24,32 (top, middle and bottom, respectively). Simulations performed

on a disk for times t = 1,10,50 (left, middle, right).



Z. Lin et al. / Journal of Computational Physics 256 (2014) 806–823 819

Fig. 10. Example 4: FVE approximation of species u1 (top) and u2 (bottom) for cross-diffusion values D12 = 22.2665,24,32 (left, middle and right, respec-

tively). Simulations performed on Ω = (0,20)3 until T = 50.

of the method in presence of stretched primal grids (see e.g. [1]). In addition, rigorous comparison with experimental

results is still a difficult task, however cross-diffusion effects could be introduced in laboratory experiments following the

protocols described in [9]. Further extensions of our results (currently under development) include the study of pattern

formation in growing domains (see e.g. [31]), and its relation with applications in biology (excitable media [10] and limb

morphogenesis [50]).
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Appendix A. Proof of Theorem 2.1

The linearization of (1.1) around the state u∗ can be expressed by

∂u

∂t
=

(

D� + Gu
(

u∗))u,

where D = diag(D11, D22) because of D12 = D21 = 0, and

Gu
(

u∗) =
(

β − 1 α2

−β −α2

)

.

We define the Banach space

X :=
{

u ∈
[

C1(Ω̄)
]2
:

∂u1

∂η
= ∂u2

∂η
= 0 on ∂Ω

}

.

Let



820 Z. Lin et al. / Journal of Computational Physics 256 (2014) 806–823

0 = μ1 < μ2 < · · · → ∞,

be the eigenvalues of the operator −� on Ω under homogeneous Neumann boundary conditions, and E(μi) be the

space of eigenfunctions corresponding to μi . If Xi j := {c · φi j: c ∈ R
2}, where {φi j} are orthonormal basis of E(μi) for

j = 1, . . . ,dimE(μi), then we have the following space decomposition

X =
∞

⊕

i=1

Xi, where Xi =
dim E(μi)

⊕

j=1

Xi j .

Therefore the space Xi is invariant under the operator D� + Gu(u
∗), and λ is an eigenvalue of this operator on Xi , if and

only if it is an eigenvalue of the matrix −μiD + Gu(u
∗).

A direct calculation shows that the characteristic polynomial of −μiD + Gu(u
∗) is given by

ψi(λ) = λ2 + B iλ + C i,

where

B i = α2 + 1− β + (D11 + D22)μi, C i = D11D22μ
2
i +

[

α2D11 + (1− β)D22

]

μi + α2.

It is straightforward to verify that B i and C i are positive if and only if (2.1) holds. Thus, for each i � 1, the two roots of

ψi(λ) = 0 all have negative real parts, and this concludes the proof.

Appendix B. Proof of Theorem 2.2

By

ū1 = 1

|Ω|

∫

Ω

u1(x, t)dx,

we will denote the mean value of a function u1 on Ω at time t . Let us consider the function

J (t) :=
∫

Ω

(

u1(x, t) − ū1

)2
dx+

∫

Ω

(

u2(x, t) − ū2

)2
dx = 2

(

J1(t) + J2(t)
)

,

where J i(t) = 1
2

∫

Ω
(ui(x, t) − ūi)

2 dx for i = 1,2. Differentiation of J1 with respect to t yields

d

dt
J1(t) =

∫

Ω

(u1 − ū1)

(

du1

dt
− dū1

dt

)

dx

=
∫

Ω

(u1 − ū1)
(

D11�u1 + D12�u2 + u2
1u2 − (β + 1)u1 − ū2

1ū2 + (β + 1)ū1

)

dx

=
∫

Ω

(u1 − ū1)(D11�u1 + D12�u2)dx+
∫

Ω

(u1 − ū1)
[(

−β − 1+ ū2(u1 + ū1)
)

(u1 − ū1) + u2
1(u2 − ū2)

]

.

After using the homogeneous Neumann boundary conditions of (1.1), it follows that

d

dt
J1(t) = −D11

∫

Ω

|∇u1|2 dx− D12

∫

Ω

∇u1 · ∇u2 dx

+
∫

Ω

(u1 − ū1)
[(

−β − 1+ ū2(u1 + ū1)
)

(u1 − ū1) + u2
1(u2 − ū2)

]

. (B.1)

In a similar way,

d

dt
J2(t) =

∫

Ω

(u2 − ū2)

(

du2

dt
− dū2

dt

)

dx

=
∫

Ω

(u2 − ū2)
(

D21�u1 + D22�u2 + βu1 − u2
1u2 − βū1 + ū2

1ū2

)

dx
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= −D21

∫

Ω

∇u1 · ∇u2 dx− D22

∫

Ω

|∇u1|2 dx

+
∫

Ω

(u2 − ū2)
[(

β − u2(u1 + ū1)
)

(u1 − ū1) − ū2
1(u2 − ū2)

]

. (B.2)

Combining (B.1) and (B.2), we have

d( J1 + J2)

dt
= −D11

∫

Ω

|∇u1|2 dx− (D12 + D21)

∫

Ω

∇u1 · ∇u2 dx− D22

∫

Ω

|∇u2|2 dx

+
∫

Ω

(u1 − ū1)
2
[

−β − 1+ ū2(u1 + ū1)
]

dx+
∫

Ω

(u2 − ū2)
2
[

−ū2
1

]

dx

+
∫

Ω

(u1 − ū1)(u2 − ū2)
[

β + u2
1 − u2(u1 + ū1)

]

dx.

Since 0� u1(x, t) � K1 , 0� u2(x, t) � K2 for all (x, t) ∈ ΩT , we have

d( J1 + J2)

dt
� −D11

∫

Ω

|∇u1|2 dx+ (D12 + D21)

∫

Ω

|∇u1 · ∇u2|dx− D22

∫

Ω

|∇u2|2 dx

+ (−β − 1+ 2K1K2)

∫

Ω

(u1 − ū1)
2 dx+

(

β + K 2
1 + 2K1K2

)

∫

Ω

∣

∣(u1 − ū1)(u2 − ū2)
∣

∣dx.

Applying Hölder’s and Poincaré inequalities yields

d( J1 + J2)

dt
� −D11

∫

Ω

|∇u1|2 dx+ (D12 + D21)

(∫

Ω

|∇u1|2 dx
)1/2(∫

Ω

|∇u2|2 dx
)1/2

− D22

∫

Ω

|∇u2|2 dx+ −β − 1+ 2K1K2

μ2

∫

Ω

|∇u1|2 dx

+
β + K 2

1 + 2K1K2

μ2

(∫

Ω

|∇u1|2 dx
)1/2(∫

Ω

|∇u2|2 dx
)1/2

=
(

−D11 + −β − 1+ 2K1K2

μ2

)∫

Ω

|∇u1|2 dx− D22

∫

Ω

|∇u2|2 dx

+
(

D12 + D21 +
β + K 2

1 + 2K1K2

μ2

)(∫

Ω

|∇u1|2 dx
)1/2(∫

Ω

|∇u2|2 dx
)1/2

.

Since (2.2) holds, it follows from Cauchy’s inequality, that

d( J1 + J2)

dt
< 0.

Therefore, J (t) → 0 exponentially as t → 0, which implies that problem (1.1) does not possess an inhomogeneous steady

state.

Appendix C. Proof of Theorem 2.3

Let

D =
(

D11 D12

D21 D22

)

denote the diffusion matrix. Direct computation gives that the characteristic polynomial of −μiD + Gu(u
∗) is

ψi(λ) = λ2 + B̄ iλ + C̄ i,

where



822 Z. Lin et al. / Journal of Computational Physics 256 (2014) 806–823

B̄ i = α2 + 1− β + (D11 + D22)μi,

C̄ i = (D11D22 − D12D21)μ
2
i +

[

α2D11 + (1− β)D22 − βD12 + α2D21

]

μi + α2.

Let λ1(μi) and λ2(μi) be the two roots of ψi(λ) = 0. We then have

λ1(μi) + λ2(μi) = B̄ i and λ1(μi)λ2(μi) = C̄ i .

In order to ensure that Reλ1(μi) < 0 and Reλ2(μi) > 0, a necessary and sufficient condition is C̄ i < 0 (based on the fact

that B̄ i > 0).

Next, we look for conditions equivalent to C̄ i < 0. Notice that C̄ i is a quadratic polynomial with respect to μi . In addition,

there are two values of D11D22 − D12D21 to be considered.

Case (i) D11D22 − D12D21 > 0; If and only if

1

β

[

α2(D11 + D21) + (1− β)D22 + 2α
√

D11D22 − D12D21

]

� D12,

there exists a positive constant

μi =
−α2D11 − (1− β)D22 + βD12 − α2D21

2(D11D22 − D12D21)
,

such that C̄ i < 0.

Case (ii) D11D22 − D12D21 � 0; We set

μi =
α2D11 + (1− β)D22 − βD12 + α2D21

2(D11D22 − D12D21)
,

and then C̄ i < 0.

The above argument shows that (2.3) holds if and only if Turing patterns arise, and this completes the proof.
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