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A B S T R A C T

We propose four-field and five-field Hu–Washizu-type mixed formulations for nonlinear poroe-
lasticity – a coupled fluid diffusion and solid deformation process – considering that the
permeability depends on a linear combination between fluid pressure and dilation. As the
determination of the physical strains is necessary, the first formulation is written in terms of the
primal unknowns of solid displacement and pore fluid pressure as well as the poroelastic stress
and the infinitesimal strain, and it considers strongly symmetric Cauchy stresses. The second
formulation imposes stress symmetry in a weak sense and it requires the additional unknown
of solid rotation tensor. We study the unique solvability of the problem using the Banach
fixed-point theory, properties of twofold saddle-point problems, and the Banach–Nečas–Babuška
theory. We propose monolithic Galerkin discretisations based on conforming Arnold–Winther
for poroelastic stress and displacement, and either PEERS or Arnold–Falk–Winther finite element
families for the stress–displacement-rotation field variables. The wellposedness of the discrete
problem is established as well, and we show a priori error estimates in the natural norms. Some
numerical examples are provided to confirm the rates of convergence predicted by the theory,
and we also illustrate the use of the formulation in some typical tests in Biot poroelasticity.

. Introduction

.1. Scope

The coupling of interstitial fluid flow and solid mechanics in a porous medium has an important role in a number of socially
elevant applications [1]. In particular, nonlinear poroelasticity equations arise, for example, in models of geomechanics and in
he study of deformable soft tissues (such as filtration of aqueous humor through cartilage-like structures in the eye and with
pplication in glaucoma formation). In the present work we focus on the case of fully saturated deformable porous media (the
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solid and fluid constituents of the mixture occupy a complementary fraction of volume in the macroscopic body) and in instances
where the permeability coefficient depends on the porosity (which is in turn related to the total amount of fluid in the poroelastic
mixture) [2]. In the classical form for this class of problems the momentum and mass balance equations for a solid–fluid mixture
are written in terms of the solid displacement of the porous matrix and the averaged interstitial pressure. Examples of analysis of
existence and uniqueness of solution can be found in [3–9]. These works expand the theory available for linear Biot consolidation
problems using, for example, constructive Galerkin approximations together with Brouwer’s fixed-point arguments with compactness
and passage to the limit, the theory of monotone operators in Banach spaces and semigroups, abstract results on doubly nonlinear
evolution equations, and the modification of the arguments to the case of pseudo-monotone nonlinear couplings using Brézis’ theory.
One of the goals of this paper is to extend the previous analysis to the case of mixed formulations for the solid phase. Rewriting
the governing equations in mixed form using the Hellinger–Reissner principle and writing the total poroelastic stress as a new
unknown, is an approach employed already in the analysis of a number of mixed models for linear poroelasticity [10–14] and in
poroelasticity/free-fluid couplings [15–17]. These formulations may incorporate also the tensor of rotations to impose in a weak
manner the symmetry of the poroelastic stress tensor. There, in deriving the weak forms, one tests the constitutive equation for
stress against a test function for stress. In contrast, in the present treatment we also require the tensor of infinitesimal strains as
an unknown since it is an important field acting in the coupling with the fluid phase mechanics via the nonlinear permeability
(regarded as a function of the interstitial fluid pressure and the trace of the strain tensor). In the context of elasticity problems,
the popular Hu–Washizu formulation [18,19] has displacement, stress and strain tensors as three unknowns, and we note that the
Hellinger–Reissner formulation mentioned above is a special case of the Hu–Washizu formulation (it is obtained after applying the
Fenchel–Legendre transformation eliminating the strain from the latter formulation [20]).

Apart from the application of Hu–Washizu formulations in many works for linear elasticity (see, e.g., [21–25] and the references
herein), the solvability analysis of the continuous and discrete twofold saddle-point mixed problems (including also error estimates)
as been carried out in [26,27] for Hencky-strain nonlinear elasticity, as well as for more recent models for stress-assisted diffusion
oupled with poroelasticity [28]. There, one tests the constitutive equation for stress against the test function associated with the
pace of infinitesimal strains. In that setting, a key ingredient in the analysis is the assumption that the nonlinearity in the weak
orms induces a Lipschitz continuous and strongly monotone operator (this last condition being required in a suitable kernel).

In the present scenario the analysis requires to define a nonlinear operator 𝑨 ∶ 𝐗 → 𝐗′ where 𝐗 consists of square integrable and
ymmetric tensors and scalar functions in H1. The nonlinearity is inherited from the nonlinear dependence of permeability on fluid
ressure and on skeleton strains, and for some constitutive forms, it does not necessarily imply that 𝑨 is monotone. In this work we

present two formulations, in the first we impose the symmetry of the stress tensor in a strong way, while in the second we impose
the symmetry in a weak sense, using the rotation tensor as a further unknown. Then, similarly to [29] (see also [30]) we have the
nonlinear term inside the saddle-point structure, unlike [31,32] where the nonlinear term is associated with a perturbation of the
saddle-point problem. Therefore we proceed by a fixed-point argument and consider a linear twofold saddle-point formulation that
suggests the structure of a fixed-point operator. This map is shown to be well-defined (for this we use an appropriate adaptation of
the theory from, e.g., [33]), to map a conveniently chosen ball into itself, and to be Lipschitz continuous. Then, by establishing a
contracting property the unique solvability will be a consequence of Banach fixed-point theorem. Such an analysis hinges on data
smallness assumptions, which involve boundary data, source terms, and permeability bounds.

For the associated Galerkin schemes we employ, on the one hand, for the strong symmetry formulation, Arnold–Winther finite
elements of degree 𝑘 ≥ 1 [34] to approximate the strain tensor, poroelastic stress tensor and displacement, and continuous piecewise
polynomials of degree 𝑘 + 1 for the pore pressure; and we note that for this finite element family, one can also employ piecewise
polynomials of degree 𝑘+2 for the symmetric strain tensor to maintain inf-sup stability. On the other hand, for the weak symmetry
formulation, we use the classical PEERS elements [35] to approximate the strain tensor, poroelastic stress tensor, displacement and
the rotation tensor, and continuous piecewise polynomials of degree 𝑘 + 1 for the interstitial pressure (we also use a family based
on Arnold–Falk–Winther elements [36]). Next we apply the same arguments utilised for the continuous problem to prove unique
solvability. In addition, using standard tools and techniques for the error decomposition, and approximation properties of mentioned
finite element spaces, we obtain the corresponding Céa estimate and rates of convergence.

1.2. Outline

The content of this paper has been laid out as follows. In the remainder of this section we include notation conventions and
preliminary results that are used throughout the manuscript. Section 1.4 provides details of the model, describing the components
of the balance equations and stating boundary conditions. One weak formulation (with strong stress symmetry) and its properties
are collected in Section 2. Section 3 is devoted to the analysis of solvability of this weak form, using arguments from the twofold
saddle-point variant of the Babuška–Brezzi theory from [30]. Next we address in Section 4 the solvability and stability analysis of
the discrete problem, where similar arguments are employed, following [27]. A priori error estimates are derived in Section 5. In
section Section 6 we reformulate the equations to include weak imposition of stress, and in Section 7 we collect computational
2

results, consisting in verification of convergence and simulation of different cases on simple geometries.
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1.3. Notation and preliminaries

Let 𝐿2(𝛺) be the set of all square-integrable functions in 𝛺 ⊂ R𝑑 where 𝑑 ∈ {2, 3} is the spatial dimension, and denote by
𝐋2(𝛺) = 𝐿2(𝛺)𝑑 its vector-valued counterpart and by L2(𝛺) = 𝐿2(𝛺)𝑑×𝑑 its tensor-valued counterpart. We also write

L2
sym(𝛺) ∶= {𝝉 ∈ L2(𝛺) ∶ 𝝉 = 𝝉𝚝}, L2

skew(𝛺) ∶= {𝝉 ∈ L2(𝛺) ∶ 𝝉 = −𝝉𝚝},

to represent the symmetric and skew-symmetric tensors in 𝛺 with each component being square-integrable. Standard notation will
be employed for Sobolev spaces H𝑚(𝛺) with 𝑚 ≥ 0 (and we note that H0(𝛺) = 𝐿2(𝛺)). Their norms and seminorms are denoted as
‖ ⋅ ‖𝑚,𝛺 and | ⋅ |𝑚,𝛺, respectively (as well as for their vector and tensor-valued counterparts 𝐇𝑚(𝛺), H𝑚(𝛺)) see, e.g., [37].

As usual I stands for the identity tensor in R𝑑×𝑑 , and | ⋅ | denotes the Euclidean norm in R𝑑 . Also, for any vector fields 𝒗 = (𝑣𝑖)𝑖=1,𝑑
we set the gradient and divergence operators as

∇𝒗 ∶=
(

𝜕𝑣𝑖
𝜕𝑥𝑗

)

𝑖,𝑗=1,𝑑
and div 𝒗 ∶=

𝑑
∑

𝑗=1

𝜕𝑣𝑗
𝜕𝑥𝑗

.

In addition, for any tensor fields 𝝉 = (𝜏𝑖𝑗 )𝑖,𝑗=1,𝑑 and 𝜻 = (𝜁𝑖𝑗 )𝑖,𝑗=1,𝑑 , we let 𝐝𝐢𝐯 𝝉 be the divergence operator div acting along the rows
of 𝝉, and define the transpose, the trace and the tensor inner product, respectively, as

𝝉 t ∶= (𝜏𝑗𝑖)𝑖,𝑗=1,𝑑 , tr(𝝉) ∶=
𝑑
∑

𝑖=1
𝜏𝑖𝑖, and 𝝉 ∶ 𝜻 ∶=

𝑛
∑

𝑖,𝑗=1
𝜏𝑖𝑗𝜁𝑖𝑗 .

e also recall the Hilbert space

𝐇(div;𝛺) ∶=
{

𝒛 ∈ 𝐋2(𝛺) ∶ div 𝒛 ∈ L2(𝛺)
}

,

ith norm ‖𝒛‖2div;𝛺 ∶= ‖𝒛‖20,𝛺 + ‖ div 𝒛‖20,𝛺, and introduce the tensor version of 𝐇(div;𝛺) given by

H(𝐝𝐢𝐯;𝛺) ∶=
{

𝝉 ∈ L2(𝛺) ∶ 𝐝𝐢𝐯 𝝉 ∈ 𝐋2(𝛺)
}

,

whose norm will be denoted by ‖ ⋅ ‖𝐝𝐢𝐯;𝛺.

.4. Governing equations

Let us consider a fully-saturated poroelastic medium (consisting of a mechanically isotropic and homogeneous fluid–solid
ixture) occupying the open and bounded domain 𝛺 in R𝑑 , with Lipschitz boundary 𝛤 . The symbol 𝒏 will stand for the unit

utward normal vector on the boundary. Let 𝒇 ∈ 𝐋2(𝛺) be a prescribed body force per unit of volume (acting on the fluid–structure
ixture) and let 𝑔 ∈ 𝐿2(𝛺) be a net volumetric fluid production rate.

Under the assumption of negligible gravitational effects as well as material deformations being sufficiently small, and varying
ufficiently slowly so that inertial effects are considered negligible (see further details in [38]), we have that the balance of linear
omentum for the solid–fluid mixture is written as

− 𝐝𝐢𝐯𝝈 = 𝒇 in 𝛺, (1.1)

ith 𝝈 being the total Cauchy stress tensor of the mixture (conformed by the effective solid stress and effective fluid stress), whose
ependence on strain and on fluid pressure is given by the constitutive assumption (or effective stress principle)

𝝈 = 𝒅 − 𝛼𝑝I in 𝛺. (1.2)

ere the skeleton displacement vector 𝒖 from the position 𝒙 ∈ 𝛺 is an unknown, the tensor 𝒅 = 𝜺(𝒖) ∶= 1
2 (∇𝒖 + [∇𝒖]𝚝) is the

infinitesimal strain, by  we denote the fourth-order elasticity tensor, also known as Hooke’s tensor (symmetric and positive definite
and characterised by 𝒅 ∶= 𝜆(tr 𝒅)I+2𝜇 𝒅), I is the identity second-order tensor, 𝜆 and 𝜇 are the Lamé parameters (assumed constant
and positive), 0 ≤ 𝛼 ≤ 1 is the Biot–Willis parameter, and 𝑝 denotes the Darcy fluid pressure (positive in compression), which is an
unknown in the system.

We also consider the balance of angular momentum, which in this context states that the total poroelastic stress is a symmetric
tensor

𝝈 = 𝝈𝚝. (1.3)

The fluid content (due to both fluid saturation and local volume dilation) is given by

𝜁 = 𝑐0𝑝 + 𝛼 div 𝒖 = 𝑐0𝑝 + 𝛼 tr 𝒅, (1.4)

where 𝑐0 is the constrained specific storage (or storativity) coefficient. Using Darcy’s law to describe the discharge velocity in terms
of the fluid pressure gradient, we can write the balance of mass for the total amount of fluid in the mixture as 𝜕𝑡𝜁 − div(𝜅∇𝑝) = 𝑔
in 𝛺 × (0, 𝑡end), where 𝜅 is the intrinsic permeability (divided by the fluid viscosity) of the laminar flow in the medium, a nonlinear
function of the porosity. In turn, in the small strains limit the porosity can be approximated by a linear function of the fluid content
𝜁 (see for example [9, Section 2.1]), and so, thanks to (1.4), we can simply write 𝜅(𝒅, 𝑝). Furthermore, after a backward Euler
3
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semi-discretisation in time with a constant time step and rescaling appropriately, we only consider the type of equations needed to
solve at each time step and therefore we will concentrate on the form

𝑐0𝑝 + 𝛼 tr 𝒅 − div(𝜅(𝒅, 𝑝)∇𝑝) = 𝑔 in 𝛺. (1.5)

ypical constitutive relations for permeability are, for example, of exponential or Kozeny–Carman type (see, e.g., [39])

𝜅(𝒅, 𝑝) =
𝑘0
𝜇𝑓

I +
𝑘1
𝜇𝑓

exp(𝑘2(𝑐0𝑝 + 𝛼 tr 𝒅))I, 𝜅(𝒅, 𝑝) =
𝑘0
𝜇𝑓

I +
𝑘1(𝑐0𝑝 + 𝛼 tr 𝒅)3

𝜇𝑓 (1 − (𝑐0𝑝 + 𝛼 tr 𝒅))2
I, (1.6)

where 𝜇𝑓 denotes the viscosity of the interstitial fluid and 𝑘0, 𝑘1, 𝑘2 are model constants. We note that in the case of incompressible
constituents one has 𝑐0 = 0 and 𝛼 = 1, indicating that permeability depends only on the dilation tr 𝒅 = div 𝒖 (see, e.g., [3]). We
also note that even in such a scenario (of incompressible phases) the overall mixture is not necessarily incompressible itself. More
precise assumptions on the behaviour of the permeability are postponed to Section 3.

To close the system of equations, we consider non-homogeneous displacement boundary conditions for the momentum balance
and non-homogeneous flux boundary conditions on the mass balance equation. For prescribed 𝒖𝛤 ∈ 𝐇1∕2(𝛤 ) and 𝑟𝛤 ∈ H−1∕2(𝛤 ) we
set

𝒖 = 𝒖𝛤 and 𝜅(𝒅, 𝑝)∇𝑝 ⋅ 𝒏 = 𝑟𝛤 on 𝛤 . (1.7)

Remark 1.1. Note that the boundary conditions (1.7) are considered to simplify the exposition. While there is no theoretical issue
in imposing Dirichlet condition for 𝑝 on a subset of 𝛤 , our analysis covers the case if Dirichlet condition is imposed for 𝒖 on only a
subset of 𝛤 , which has non-zero (𝑑−1) measure. Part of the required modifications are in the proof of unique solvability of auxiliary
problems required in the verification of inf-sup conditions, which will still hold in the case of mixed boundary conditions provided
that suitable assumptions are made on the domain boundary.

We stress that the wellposedness of the time-dependent variational problem in two-field formulation of the same underlying
continuous problem (physical model of nonlinear poroelasticity) has recently been presented in [40]. The analysis in that reference
is conducted for the case of incompressible constituents (taking 𝑐0 = 0). The authors also assume that the permeability is uniformly
bounded away from zero and define a fixed-point map in terms of the amount of fluid (which only involves the dilation term). In
our case, the starting model problem is steady, the weak formulations are in mixed and mixed-primal form, and the analysis follows
a different fixed-point argument.

2. A four-field formulation and preliminary properties

2.1. Derivation of weak forms

We proceed to test Eq. (1.1) against 𝒗 ∈ 𝐋2(𝛺), to test the constitutive equation for strain 𝒅 = 𝜺(𝒖) against 𝝉 ∈ Hsym(𝐝𝐢𝐯;𝛺) ∶=
{

𝝉 ∈ L2
sym(𝛺) ∶ 𝐝𝐢𝐯 𝝉 ∈ 𝐋2(𝛺)

}

, the Eqs. (1.2) and (1.5), by 𝒆 ∈ L2
sym(𝛺) and 𝑞 ∈ H1(𝛺), respectively, integrate by parts and using

the boundary conditions (1.7) naturally, we finally arrive at

−∫𝛺
𝒗 ⋅ 𝐝𝐢𝐯𝝈 = ∫𝛺

𝒇 ⋅ 𝒗 ∀ 𝒗 ∈ 𝐋2(𝛺),

−∫𝛺
𝝉 ∶ 𝒅 − ∫𝛺

𝒖 ⋅ 𝐝𝐢𝐯 𝝉 = −⟨𝝉𝒏, 𝒖𝛤 ⟩𝛤 ∀ 𝝉 ∈ Hsym(𝐝𝐢𝐯;𝛺),

∫𝛺
𝒅 ∶ 𝒆 − 𝛼 ∫𝛺

𝑝 tr 𝒆 − ∫𝛺
𝝈 ∶ 𝒆 = 0 ∀ 𝒆 ∈ L2

sym(𝛺),

∫𝛺
𝜅(𝒅, 𝑝)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺

𝑝 𝑞 + 𝛼 ∫𝛺
𝑞 tr 𝒅 = ∫𝛺

𝑔 𝑞 + ⟨𝑟𝛤 , 𝑞⟩𝛤 ∀ 𝑞 ∈ H1(𝛺),

(2.1)

here ⟨⋅, ⋅⟩𝛤 denotes the duality pairing between H−1∕2(𝛤 ) and its dual H1∕2(𝛤 ) with respect to the inner product in 𝐿2(𝛤 ) (and we
use the same notation in the vector-valued case). Note also that the balance of angular momentum (1.3) has been enforced as an
essential condition in the functional space for poroelastic stress.

Next, we notice that (2.1) can be regarded as a twofold saddle-point structure. In fact, let us adopt the following notation for
the Hilbert spaces for the strain–pressure pair, the poroelastic stress, and the displacement:

𝐗 ∶= L2
sym(𝛺) × H1(𝛺), 𝐘 ∶= Hsym(𝐝𝐢𝐯;𝛺) and 𝐙 ∶= 𝐋2(𝛺),

respectively. In addition, we group and order the trial and test functions as follows:

𝒅 ∶= (𝒅, 𝑝) ∈ 𝐗, 𝝈 ∈ 𝐘, 𝒖 ∈ 𝐙,

𝒆 ∶= (𝒆, 𝑞) ∈ 𝐗, 𝝉 ∈ 𝐘, 𝒗 ∈ 𝐙,

where 𝐗, 𝐘, 𝐗 × 𝐘 and 𝐙 are endowed with the norms

‖𝒆‖2 ∶= ‖𝒆‖2 + ‖𝑞‖2 , ‖𝝉‖ ∶= ‖𝝉‖ , ‖(𝒆, 𝝉)‖2 ∶= ‖𝒆‖2 + ‖𝝉‖2
4

𝐗 0,𝛺 1,𝛺 𝐘 𝐝𝐢𝐯,𝛺 𝐗×𝐘 𝐗 𝐘
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‖𝒗‖𝐙 ∶= ‖𝒗‖0,𝛺 , ‖((𝒆, 𝝉), 𝒗)‖2 ∶= ‖(𝒆, 𝝉)‖2𝐗×𝐘 + ‖𝒗‖2𝐙.

Introducing the nonlinear and bilinear weak forms 𝑎 ∶ 𝐗 × 𝐗 → R, 𝑏1 ∶ 𝐗 × 𝐘 → R and 𝑏2 ∶ (𝐗 × 𝐘) × 𝐙 → R defined by

𝑎(𝒅, 𝒆) ∶= ∫𝛺
𝒅 ∶ 𝒆 + ∫𝛺

𝜅(𝒅)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺
𝑝 𝑞 + 𝛼 ∫𝛺

𝑞 tr 𝒅 − 𝛼 ∫𝛺
𝑝 tr 𝒆,

𝑏1(𝒆, 𝝉) ∶= −∫𝛺
𝝉 ∶ 𝒆,

𝑏2((𝒆, 𝝉), 𝒗) ∶= −∫𝛺
𝒗 ⋅ 𝐝𝐢𝐯 𝝉 ,

(2.2)

espectively; and the linear functionals 𝐹 ∈ 𝐙′, 𝐻 ∈ 𝐘′, 𝐺 ∈ 𝐗′ by

𝐹 (𝒗) ∶= ∫𝛺
𝒇 ⋅ 𝒗, 𝐻(𝝉) ∶= −⟨𝝉𝒏, 𝒖𝛤 ⟩𝛤 , 𝐺(𝒆) ∶= ∫𝛺

𝑔 𝑞 + ⟨𝑟𝛤 , 𝑞⟩𝛤 ,

we can write the weak form (2.1) as follows: Find ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙 such that

𝑎(𝒅, 𝒆) + 𝑏1(𝒆,𝝈) = 𝐺(𝒆),

𝑏1(𝒅, 𝝉) + 𝑏2((𝒆, 𝝉), 𝒖) = 𝐻(𝝉),

𝑏2((𝒅,𝝈), 𝒗) = 𝐹 (𝒗),

(2.3)

or all ((𝒆, 𝝉), 𝒗) ∈ (𝐗 × 𝐘) × 𝐙.

emark 2.1. Note that when 𝑐0 approaches zero, our control over the 𝐿2-part of the fluid pressure norm diminishes. Consequently,
the uniqueness of fluid pressure cannot be guaranteed unless we search for it within a space such as H1(𝛺) ∩ 𝐿2

0(𝛺), due to the
pure flux boundary conditions imposed on the mass balance equation. Without this consideration, the lack of uniqueness would
also extend to stress, as implied by (1.2). In such cases, it becomes necessary to restrict tensors in the spaces 𝐘 to those with a zero
mean value (and similarly for the space 𝐘̃ to be introduced in section Section 6). A similar scenario arises when 𝛼 tends to zero:
the poroelastic stress loses its unique definition (even though the fluid pressure retains it), requiring the adoption of the zero mean
condition within the stress space.

2.2. Stability properties and suitable inf-sup conditions

We start by establishing the boundedness of the bilinear forms 𝑏1 and 𝑏2:
|

|

|

𝑏1(𝒆, 𝝉)
|

|

|

≤ ‖𝒆‖𝐗‖𝝉‖𝐘,
|

|

|

𝑏2((𝒆, 𝝉), 𝒗)
|

|

|

≤ ‖(𝒆, 𝝉)‖𝐗×𝐘‖𝒗‖𝐙. (2.4a)

On the other hand, using Hölder and trace inequalities we can readily observe that the right-hand side functionals are all bounded
|

|

|

𝐺(𝒆)||
|

≲ (‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 )‖𝒆‖𝐗 ∀𝒆 ∈ 𝐗, |

|

|

𝐻(𝝉)||
|

≲ ‖𝒖𝛤 ‖1∕2,𝛤 ‖𝝉‖𝐘 ∀𝝉 ∈ 𝐘, (2.5)
|

|

|

𝐹 (𝒗)||
|

≤ ‖𝒇‖0,𝛺 ‖𝒗‖𝐙 ∀𝒗 ∈ 𝐙.

Finally, it is straightforward to see that the kernel of the bilinear form 𝑏2 is a closed subspace of 𝐗 × 𝐘. It is denoted as

𝐗 × 𝐘0, (2.6)

and the second component admits the characterisation

𝐘0 ∶= {𝝉 ∈ 𝐘 ∶ 𝐝𝐢𝐯 𝝉 = 𝟎} (2.7)

On the other hand, we note that 𝑏2 satisfies the inf-sup condition

sup
𝟎≠(𝒆,𝝉)∈𝐗×𝐘

𝑏2((𝒆, 𝝉), 𝒗)
‖(𝒆, 𝝉)‖𝐗×𝐘

≥ 𝛽𝑏2 ‖𝒗‖𝐙 ∀ 𝒗 ∈ 𝐙. (2.8)

his is a well-known result stating the surjectivity of the divergence operator (see, e.g., [41]) extended to the tensor case and
onsidering symmetric stresses. It is easily proven by means of the wellposed auxiliary problem of finding, for a given 𝒗 ∈ 𝐙, the
nique 𝒚 ∈ 𝐇1

0(𝛺) such that

−𝐝𝐢𝐯[𝝐(𝒚)] = 𝒗 in 𝛺; 𝒚 = 𝟎 on 𝛤 ,

nd then constructing 𝝉̂ = 𝝐(𝒚) which clearly belongs to 𝐘 and, moreover, it satisfies ‖𝝉̂‖𝐘 ≤ 𝐶‖𝒗‖𝐙. In addition, we note that for
ll 𝝉 ∈ 𝐘0, it suffices to take 𝒆 = 𝝉 to easily arrive at

sup
𝑏1(𝒆, 𝝉) ≥ ‖𝝉‖𝐘 ∀ 𝝉 ∈ 𝐘0. (2.9)
5

𝟎≠𝒆∈𝐗 ‖𝒆‖𝐗
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3. Existence and uniqueness of weak solution

3.1. Preliminaries

We stress that if the permeability 𝜅 is a positive constant 𝜅 = 𝜅0 or a space-dependent uniformly bounded scalar field 𝜅(𝒙) in
∞(𝛺), or a positive definite matrix 𝜅 = K(𝒙), then the variational form 𝑎(⋅, ⋅) is bounded and coercive in 𝐗. In this case the system

(2.3) is a linear twofold saddle-point problem which is uniquely solvable, thanks to the properties of the bilinear forms 𝑏1(⋅, ⋅), 𝑏2(⋅, ⋅)
nd owing to, e.g., [33, Theorem 3.1].

On the other hand, if the permeability in the variational form 𝑎(⋅, ⋅) induces monotone and Lipschitz-continuous nonlinear
operator, i.e.,

𝑨 ∶ 𝐗 → 𝐗′, 𝒅 ↦ 𝑨(𝒅), ⟨𝑨(𝒅), 𝒆⟩ ∶= 𝑎(𝒅, 𝒆),

with

|⟨𝑨(𝒅1) −𝑨(𝒅2),𝒅1 − 𝒅2⟩| ≳ ‖𝒅1 − 𝒅2‖
2
𝐗, ‖𝑨(𝒅1) −𝑨(𝒅2)‖𝐗′ ≲ ‖𝒅1 − 𝒅2‖𝐗,

then the system (2.3) is a nonlinear twofold saddle-point problem, which is uniquely solvable thanks to the properties of the bilinear
forms 𝑏1(⋅, ⋅), 𝑏2(⋅, ⋅) and a direct application of [30, Lemma 2.1].

However, and as discussed in [4,9,40], some of the typical nonlinearities assumed by 𝜅 (1.6) do not guarantee monotonicity of
the nonlinear operator 𝑨.

Note, for example, that in [9] the authors ask that 𝜅 (they only consider it a function of the dilation tr 𝒅) is such that

𝜅 ∈ 𝐶1(𝛺), 𝜅(0) > 0, 𝜅′ > 0,

n [6] the permeability 𝜅 depends only on the fluid pressure 𝑝 and it is assumed that

0 < 𝑘0 ≤ 𝜅(𝑠) ≤ 𝑘1 ∀𝑠 ∈ R+,

nd in [42] a similar uniform boundedness is assumed even if the permeability depends on both pore pressure and the symmetric
train. In our case, for sake of the analysis in this section, we allow the permeability 𝜅(𝒅) = 𝜅(𝒅, 𝑝) to be anisotropic but still require

that it is a uniformly positive definite second-order tensor in L∞(𝛺), and Lipschitz continuous in 𝑝 ∈ H1(𝛺). That is, there exist
ositive constants 𝜅1, 𝜅2 such that

𝜅1|𝒗|2 ≤ 𝒗𝚝𝜅(⋅, ⋅)𝒗, ‖𝜅(⋅, 𝑝1) − 𝜅(⋅, 𝑝2)‖L∞(𝛺) ≤ 𝜅2‖𝑝1 − 𝑝2‖1,𝛺 , (3.1)

or all 𝒗 ∈ R𝑑 ⧵ {𝟎}, and for all 𝑝1, 𝑝2 ∈ H1(𝛺).

.2. Definition of a fixed-point operator

In view of the discussion in Section 3.1, if 𝑨 (the operators induced by the nonlinear weak form 𝑎(⋅, ⋅)) is not monotone, then
e proceed to define, for a given 𝑟 > 0, the following set

𝐖 ∶=
{

𝒘 ∶= (𝒘, 𝑠) ∈ 𝐗 ∶ ‖𝒘‖𝐗 ≤ 𝑟
}

, (3.2)

hich is a closed ball of 𝐗, with centre at the origin and radius 𝑟. Next, for a fixed 𝒘 ∶= (𝒘, 𝑠) in 𝐖, we define the bilinear form
𝑎𝒘 ∶ 𝐗 × 𝐗 → R as follows

𝑎𝒘(𝒅, 𝒆) ∶= ∫𝛺
𝒅 ∶ 𝒆 + ∫𝛺

𝜅(𝒘)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺
𝑝 𝑞 + 𝛼 ∫𝛺

𝑞 tr 𝒅 − 𝛼 ∫𝛺
𝑝 tr 𝒆, ∀𝒅, 𝒆 ∈ 𝐗. (3.3)

hanks to the assumptions on the nonlinear permeability, we can infer that this form is continuous, as well as coercive over all of

|

|

|

𝑎𝒘(𝒅, 𝒆)
|

|

|

≤ 𝐶𝑎‖𝒅‖𝐗‖𝒆‖𝐗 ∀𝒅, 𝒆 ∈ 𝐗, (3.4)

𝑎𝒘(𝒆, 𝒆) ≥ 𝑐𝑎‖𝒆‖2𝐗 ∀ 𝒆 ∈ 𝐗, (3.5)

with

𝐶𝑎 ∶= max{2𝜇 + 𝑑𝜆, 𝑐0, 𝑑 𝛼, 𝜅2 𝑟} > 0 and 𝑐𝑎 ∶= min{𝜅1, 2𝜇, 𝑐0} > 0 (3.6)

Then we define the following fixed-point operator

 ∶ 𝐖 ⊆ 𝐗 → 𝐗, 𝒘 ↦  (𝒘) ∶= 𝒅, (3.7)

here given 𝒘 = (𝒘, 𝑠) ∈ 𝐖,  (𝒘) = 𝒅 = (𝒅, 𝑝) ∈ 𝐗 is the first component of the solution of the linearised version of problem (2.3):
ind ((𝒅,𝝈), 𝒖) ∈ 𝐗 × 𝐘 × 𝐙 such that

𝑎𝒘(𝒅, 𝒆) + 𝑏1(𝒆,𝝈) = 𝐺(𝒆),

𝑏1(𝒅, 𝝉) + 𝑏2((𝒆, 𝝉), 𝒖) = 𝐻(𝝉), (3.8)
6

𝑏2((𝒅,𝝈), 𝒗) = 𝐹 (𝒗),
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for all ((𝒆, 𝝉), 𝒗) ∈ (𝐗 × 𝐘) × 𝐙.
It is clear that ((𝒅,𝝈), 𝒖) is a solution to (2.3) if and only if 𝒅 satisfies  (𝒅) = 𝒅, and consequently, the wellposedness of (2.3) is

equivalent to the unique solvability of the fixed-point problem: Find 𝒅 ∈ 𝐖 such that

 (𝒅) = 𝒅. (3.9)

In this way, in what follows we focus on proving the unique solvability of (3.9). According to the definition of  (cf. (3.7)), it
s clear that proving that this operator is well-defined amounts to prove that problem (3.8) is wellposed.

With that in mind, let us define the bilinear form 𝐴𝒘 ∶ (𝐗 × 𝐘0) × (𝐗 × 𝐘0) → R as

𝐴𝒘((𝒅,𝝈), (𝒆, 𝝉)) ∶= 𝑎𝒘(𝒅, 𝒆) + 𝑏1(𝒆,𝝈) + 𝑏1(𝒅, 𝝉), (3.10)

nd we state the unique solvability of the linearised problem (3.8), depending on a smallness of data assumption, as follows.

emma 3.1. Given 𝑟 > 0, let us assume that
𝛾1
𝑟
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

≤ 1, (3.11)

here

𝛾1 ∶=
(𝐶𝑎 + 1 + 𝛽2 + 𝛾2)2

𝛽22 𝛾2
and 𝛾2 ∶=

(𝐶𝑎 + 2)(𝑐𝑎 + 1 + 𝐶𝑎)
𝑐𝑎

. (3.12)

hen, for a given 𝒘 ∈ 𝐖 (cf. (3.2)), there exists a unique 𝒅 ∈ 𝐖 such that  (𝒘) = 𝒅.

Proof. From the properties of 𝑎𝒘 and 𝑏1, (3.4), (3.5), (2.9) and (2.4a), we have that the bilinear form 𝐴𝒘 induces an invertible
perator on the kernel of the bilinear form 𝑏2, 𝐗 × 𝐘0 (cf. (2.6)) (see also, e.g., [43,44]). Then, from the inf-sup condition of 𝑏2
2.8), and a straightforward application of the Babuška–Brezzi theory we have that there exists a unique ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙

solution to (3.8), or equivalently, the existence of a unique 𝒅 ∈ 𝐗 such that  (𝒘) = 𝒅. Finally, from [44, Proposition 2.36], together
with (2.5), we readily obtain that

‖(𝒅,𝝈), 𝒖‖(𝐗×𝐘)×𝐙

≤ 𝛾1 sup
𝟎≠((𝒆,𝝉),𝒗)∈(𝐗×𝐘)×𝐙

𝐴𝒘((𝒅,𝝈), (𝒆, 𝝉)) + 𝑏2((𝒅,𝝈), 𝒗) + 𝑏2((𝒆, 𝝉), 𝒖)

‖(𝒆, 𝝉), 𝒗‖
≤ 𝛾1

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

,

(3.13)

and after invoking assumption (3.11), the bounds above imply that 𝒅 belongs to 𝐖, therefore completing the proof. □

3.3. Wellposedness of the continuous problem

Here, we provide the main result of this section, namely, the existence and uniqueness of solution of the nonlinear problem
(2.3). This result is established in the following theorem.

Theorem 3.1. Let 𝒇 ∈ 𝐋2(𝛺), 𝑔 ∈ 𝐿2(𝛺), 𝒖𝛤 ∈ 𝐇1∕2(𝛤 ) and 𝑟𝛤 ∈ H−1∕2(𝛤 ) such that
𝛾1
𝑟
max{𝛾1 𝜅2 𝑟, 1}

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

< 1, (3.14)

here 𝛾1 is defined in (3.12). Then, the operator  (cf. (3.7)) has a unique fixed point 𝒅 ∈ 𝐖. Equivalently, the problem (2.3) has a unique
solution ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙 with 𝒅 ∈ 𝐖. In addition, we have the following continuous dependence on data

‖(𝒅,𝝈), 𝒖‖ ≲ ‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺 . (3.15)

roof. We begin by recalling from the previous analysis that assumption (3.14) ensures the well-definiteness of  . Now, let
1 = (𝒘1, 𝑠1), 𝒘2 = (𝒘2, 𝑠2), 𝒅1 = (𝒅1, 𝑝1), 𝒅2 = (𝒅2, 𝑝2) ∈ 𝐖, be such that  (𝒘1) = 𝒅1 and  (𝒘2) = 𝒅2. According to the definition

of  (cf. (3.8)), it follows that there exist (𝝈1, 𝒖1), (𝝈2, 𝒖2) ∈ 𝐘 × 𝐙, such that for all ((𝒆, 𝝉), 𝒗) ∈ (𝐗 × 𝐘) × 𝐙, there hold

𝐴𝒘1
((𝒅1,𝝈1), (𝒆, 𝝉)) + 𝑏2((𝒆, 𝝉), 𝒖1) + 𝑏2((𝒅1,𝝈1), 𝒗) = 𝐺(𝒆) +𝐻(𝝉) + 𝐹 (𝒗),

𝐴𝒘2
((𝒅2,𝝈2), (𝒆, 𝝉)) + 𝑏2((𝒆, 𝝉), 𝒖2) + 𝑏2((𝒅2,𝝈2), 𝒗) = 𝐺(𝒆) +𝐻(𝝉) + 𝐹 (𝒗).

hen, subtracting both equations, adding and subtracting suitable terms, we easily arrive at

𝐴𝒘1
((𝒅1 − 𝒅2,𝝈1 − 𝝈2), (𝒆, 𝝉)) + 𝑏2((𝒆, 𝝉), 𝒖1 − 𝒖2) + 𝑏2((𝒅1 − 𝒅2,𝝈1 − 𝝈2), 𝒗)

= (𝜅(𝒘 ) − 𝜅(𝒘 ))∇𝑝2 ⋅ ∇𝑞.
(3.16)
7
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Therefore, recalling that 𝒘1 ∈ 𝐖, we can use the latter identity, the bound (3.13), and the assumptions of 𝜅 (cf. (3.1)), to obtain

‖𝒅1 − 𝒅2‖𝐗 ≤ ‖(𝒅1 − 𝒅2,𝝈1 − 𝝈2), 𝒖1 − 𝒖2‖(𝐗×𝐘)×𝐙

≤ 𝛾1 sup
𝟎≠((𝒆,𝝉),𝒗)
∈(𝐗×𝐘)×𝐙

𝐴𝒘1
((𝒅1 − 𝒅2,𝝈1 − 𝝈2), (𝒆, 𝝉)) + 𝑏2((𝒆, 𝝉), 𝒖1 − 𝒖2) + 𝑏2((𝒅1 − 𝒅2,𝝈1 − 𝝈2), 𝒗)

‖(𝒆, 𝝉), 𝒗‖

= 𝛾1 sup
𝟎≠((𝒆,𝝉),𝒗)
∈(𝐗×𝐘)×𝐙

∫𝛺
(𝜅(𝒘2) − 𝜅(𝒘1))∇𝑝2 ⋅ ∇𝑞

‖(𝒆, 𝝉), 𝒗‖

≤ 𝛾1 ‖𝜅(𝒘2) − 𝜅(𝒘1)‖L∞(𝛺)‖∇𝑝2‖0,𝛺 ,

then, recalling that 𝒘1 = (𝒘1, 𝑠1) and 𝒘2 = (𝒘2, 𝑠2), and using the Lipschitz continuity of 𝜅 (cf. (3.1)), along with the fact that
 (𝒘2) = 𝒅2 = (𝒅2, 𝑝2) ∈ 𝐖, we have that the estimate (3.13) is satisfied. This implies that

‖ (𝒘1) −  (𝒘2)‖𝐗 = ‖𝒅1 − 𝒅2‖𝐗
≤ 𝛾1 ‖𝜅(𝒘2) − 𝜅(𝒘1)‖L∞(𝛺)‖∇𝑝2‖0,𝛺
≤ 𝛾1 𝜅2 ‖𝑠2 − 𝑠1‖1,𝛺 𝛾1

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

≤ 𝛾21 𝜅2
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

‖𝒘1 −𝒘2‖𝐗.

The latter bound, in combination with the assumption (3.14) and the Banach fixed-point theorem, implies that  has a unique fixed
point in 𝐖. Equivalently, this result yields that there exists a unique ((𝒅,𝝈), 𝒖) ∈ (𝐗×𝐘)×𝐙 solution to (2.3). Finally, estimate (3.15)
is obtained analogously to (3.13), which completes the proof. □

Remark 3.1. In [40], the authors introduce a technique similar to the one employed in Section 3 for a variational formulation of the
time-dependent problem. They define a fixed-point operator associated with the linearised version of the problem to establish the
existence of a solution. This is accomplished under the assumption of uniform boundedness of the permeability, instead of relying
on the assumption (3.1). The proof makes use of the Schauder fixed-point theorem and the Lions–Aubin compactness theorem,
diverging from the application of Banach’s fixed-point theorem.

4. Finite element discretisation

Let us consider a regular partition ℎ of 𝛺̄ made up of triangles 𝐾 (in R2) or tetrahedra 𝐾 (in R3) of diameter ℎ𝐾 , and denote the
mesh size by ℎ ∶= max{ℎ𝐾 ∶ 𝐾 ∈ ℎ}. We will start by defining finite-dimensional subspaces 𝐗ℎ, 𝐘ℎ, 𝐙ℎ, of the functional spaces
encountered before.

Given an integer 𝓁 ≥ 0 and 𝐾 ∈ ℎ, we first let P𝓁(𝐾) be the space of polynomials of degree ≤ 𝓁 defined on 𝐾, whose vector and
tensor versions are denoted 𝑷𝓁(𝐾) ∶= [P𝓁(𝐾)]𝑑 and P𝓁(𝐾) = [P𝓁(𝐾)]𝑑×𝑑 , respectively. Also, we let 𝐑𝐓𝓁(𝐾) ∶= 𝑷𝓁(𝐾)⊕ P𝓁(𝐾)𝒙 be
he local Raviart–Thomas space of order 𝓁 defined on 𝐾, where 𝒙 stands for a generic vector in R𝑑 .

.1. Finite element spaces and definition of the Galerkin scheme

First, for fluid pressure we take Lagrangian elements as follows

𝐗2,ℎ ∶=
{

𝑞ℎ ∈ C(𝛺) ∶ 𝑞ℎ|𝐾 ∈ P𝑘+1(𝐾) ∀𝐾 ∈ ℎ
}

. (4.1)

Arnold–Winther finite elements are defined in [34] for 𝑘 ≥ 1 and for the 2D case. The lowest-order conforming space for
poroelastic stress (and here also for strain) consists of piecewise P2 tensors enriched with cubic shape functions, and piecewise
1 vectors for displacement:

𝐘ℎ ∶=
{

𝝉ℎ ∈ Hsym(𝐝𝐢𝐯;𝛺) ∶ 𝝉ℎ|𝐾 ∈ P𝑘+2(𝐾) and 𝐝𝐢𝐯 𝝉ℎ|𝐾 ∈ 𝐏𝑘(𝐾) ∀𝐾 ∈ ℎ
}

,

𝐙ℎ ∶=
{

𝒗ℎ ∈ 𝐋2(𝛺) ∶ 𝒗ℎ|𝐾 ∈ 𝐏𝑘(𝐾) ∀𝐾 ∈ ℎ
}

. (4.2)

Note that a non-conforming version is also given in [34] but it gives an unbalanced approximation error for displacement and stress
and we therefore keep only the conforming version. An appropriate interpolation operator (bounded, with suitable approximability
and commutation properties) is constructed in [34], which thanks to Fortin’s Lemma (cf. [45, Lemma 2.6]), imply a discrete inf-sup
condition for 𝑏2(⋅, ⋅) (see also [33]).

As announced, the following space for discrete strains is considered

𝐗1,ℎ ∶=
{

𝝉ℎ ∈ L2
sym(𝛺) ∶ 𝝉ℎ|𝐾 ∈ P𝑘+2(𝐾) and 𝐝𝐢𝐯 𝝉ℎ|𝐾 ∈ 𝐏𝑘(𝐾) ∀𝐾 ∈ ℎ

}

. (4.3)

Then, defining the product space 𝐗ℎ ∶= 𝐗1,ℎ × 𝐗2,ℎ, we note that the finite element subspaces (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ are inf-sup stable for
the bilinear form 𝑏2 (cf. [34])

sup
𝑏2((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ≥ 𝛽∗𝑏2 ‖𝒗ℎ‖𝐙 ∀ 𝒗ℎ ∈ 𝐙ℎ. (4.4)
8

𝟎≠(𝒆ℎ ,𝝉ℎ)∈𝐗ℎ×𝐘ℎ ‖(𝒆ℎ, 𝝉ℎ)‖𝐗×𝐘



Results in Applied Mathematics 21 (2024) 100438B.P. Lamichhane et al.

f

w

f

I

L

w

w

P

In addition, it is straightforward to see that the kernel of the bilinear form 𝑏2 can be characterised by

𝐗ℎ × 𝐘ℎ,0, with 𝐘ℎ,0 = {𝝉ℎ ∈ 𝐘ℎ ∶ 𝐝𝐢𝐯 𝝉ℎ = 𝟎}, (4.5)

and, for all 𝝉ℎ ∈ 𝐘ℎ,0, it is clear that 𝝉ℎ ∈ 𝐗1,ℎ, then we can take 𝒆ℎ = 𝝉ℎ, and thus 𝑏1 satisfies the inf-sup condition

sup
𝟎≠𝒆ℎ∈𝐗ℎ

𝑏1(𝒆ℎ, 𝝉ℎ)
‖𝒆ℎ‖𝐗

≥ ‖𝝉ℎ‖𝐘 ∀ 𝝉ℎ ∈ 𝐘0,ℎ. (4.6)

The Galerkin scheme associated with the weak formulation (2.3) consists in finding ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ such that

𝑎(𝒅ℎ, 𝒆ℎ) + 𝑏1(𝒆ℎ,𝝈ℎ) = 𝐺(𝒆ℎ),

𝑏1(𝒅ℎ, 𝝉ℎ) + 𝑏2((𝒆ℎ, 𝝉ℎ), 𝒖ℎ) = 𝐻(𝝉ℎ),

𝑏2((𝒅ℎ,𝝈ℎ), 𝒗ℎ) = 𝐹 (𝒗ℎ),

(4.7)

or all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ, with 𝒅ℎ = (𝒅ℎ, 𝑝ℎ) and 𝒆ℎ = (𝒆ℎ, 𝑞ℎ).

Remark 4.1. There are several non-conforming finite element methods for the considered mixed formulation of the elasticity
problem (see, e.g., [46–48]). For the simplicity of presentation and implementation, we only consider conforming finite element
methods in the present study.

4.2. Unique solvability of the discrete problem

In this section we analyse the Galerkin scheme (4.7). We want to emphasise that the analysis of wellposedness can be easily
accomplished by applying the results obtained for the continuous problem to the discrete scenario, which is why most of the specific
details can be excluded.

Firstly, and similarly to the continuous case, we define the following set

𝐖ℎ ∶=
{

𝒘ℎ ∶= (𝒘ℎ, 𝑠ℎ) ∈ 𝐗ℎ ∶ ‖𝒘ℎ‖𝐗 ≤ 𝑟
}

. (4.8)

Next, for a fixed 𝒘ℎ ∶= (𝒘ℎ, 𝑠ℎ) in 𝐖ℎ, we have that the bilinear form 𝑎𝒘 defined in (3.3), satisfies:

𝑎𝒘ℎ
(𝒆ℎ, 𝒆ℎ) ≥ 𝑐𝑎‖𝒆ℎ‖

2
𝐗 ∀ 𝒆ℎ ∈ 𝐗ℎ. (4.9)

Then, and again analogously to the continuous case, we define the following fixed-point operator

ℎ ∶ 𝐖ℎ ⊆ 𝐗ℎ → 𝐗ℎ, 𝒘ℎ ↦ ℎ(𝒘ℎ) ∶= 𝒅ℎ, (4.10)

here, given 𝒘ℎ = (𝒘ℎ, 𝑠ℎ) ∈ 𝐖ℎ, ℎ(𝒘ℎ) = 𝒅ℎ = (𝒅ℎ, 𝑝ℎ) ∈ 𝐗ℎ is the first component of the solution of the linearised version of
problem (4.7): Find ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ 𝐗ℎ × 𝐘ℎ × 𝐙ℎ such that

𝑎𝒘ℎ
(𝒅ℎ, 𝒆ℎ) + 𝑏1(𝒆ℎ,𝝈ℎ) = 𝐺(𝒆ℎ),

𝑏1(𝒅ℎ, 𝝉ℎ) + 𝑏2((𝒆ℎ, 𝝉ℎ), 𝒖ℎ) = 𝐻(𝝉ℎ),

𝑏2((𝒅ℎ,𝝈ℎ), 𝒗ℎ) = 𝐹 (𝒗ℎ),

(4.11)

or all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ.
It is clear that ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) is a solution to (4.7) if and only if 𝒅ℎ satisfies ℎ(𝒅ℎ) = 𝒅ℎ, and consequently, the wellposedness of

(4.7) is equivalent to the unique solvability of the fixed-point problem: Find 𝒅ℎ ∈ 𝐖ℎ such that

ℎ(𝒅ℎ) = 𝒅ℎ. (4.12)

n this way, in what follows we focus on proving the unique solvability of (4.12).

emma 4.1. Given 𝑟 > 0, assume that
𝛾∗1
𝑟
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

≤ 1, (4.13)

here 𝛾∗1 is the discrete version of 𝛾1 (cf. (3.12)), defined by

𝛾∗1 ∶=
(𝐶𝑎 + 1 + 𝛽∗2 + 𝛾2)2

(𝛽∗2 )
2 𝛾2

, (4.14)

ith 𝛾2 defined in (3.12). Then, given 𝒘ℎ ∈ 𝐖ℎ (cf. (4.8)) there exists a unique 𝒅ℎ ∈ 𝐖ℎ such that ℎ(𝒘ℎ) = 𝒅ℎ.

roof. Given 𝒘ℎ = (𝒆ℎ, 𝑞ℎ) ∈ 𝐖ℎ, we proceed analogously to the proof of Lemma 3.1 and utilise (2.4a), (3.4), (4.4), (4.6), (4.9)
and [44, Proposition 2.36] to deduce the discrete inf-sup condition

‖(𝒅ℎ,𝝈ℎ), 𝒖ℎ‖

≤ 𝛾∗1 sup
𝐴𝒘ℎ

((𝒅ℎ,𝝈ℎ), (𝒆ℎ, 𝝉ℎ)) + 𝑏2((𝒅ℎ,𝝈ℎ), 𝒗ℎ) + 𝑏2((𝒆ℎ, 𝝉ℎ), 𝒖ℎ) . (4.15)
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Therefore, owing to the fact that for finite dimensional linear problems surjectivity and injectivity are equivalent, from (4.15) and
the Banach–Nečas–Babuška theorem we obtain that there exists a unique ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ 𝐗ℎ×𝐘ℎ×𝐙ℎ satisfying (4.11), with 𝒅ℎ ∈ 𝐖ℎ,
which concludes the proof. □

The following theorem provides the main result of this section, namely, existence and uniqueness of solution to the fixed-point
problem (4.12), or equivalently, the wellposedness of problem (4.7).

Theorem 4.1. Let 𝒇 ∈ 𝐋2(𝛺), 𝑔 ∈ 𝐿2(𝛺), 𝒖𝛤 ∈ 𝐇1∕2(𝛤 ) and 𝑟𝛤 ∈ H−1∕2(𝛤 ) such that
𝛾∗1
𝑟

max{𝛾∗1 𝜅2 𝑟, 1}
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

< 1, (4.16)

where 𝛾∗1 is defined in (4.14). Then, the operator ℎ (cf. (4.10)) has a unique fixed point 𝒅ℎ ∈ 𝐖ℎ. Equivalently, the problem (4.7) has a
unique solution ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ with 𝒅ℎ ∈ 𝐖ℎ. In addition, there exists 𝐶∗ > 0 such that

‖(𝒅ℎ,𝝈ℎ), 𝒖ℎ‖ ≤ 𝐶∗(
‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺

)

. (4.17)

roof. First we observe that, as for the continuous case, assumption (4.16) ensures the well-definiteness of the operator ℎ. Now,
dapting the arguments utilised in Theorem 3.1 one can obtain the following estimate

‖ (𝒘1) −  (𝒘2)‖𝐗 = ‖𝒅1 − 𝒅2‖𝐗
≤ (𝛾∗1 )

2 𝜅2
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

‖𝒘1 −𝒘2‖𝐗.

or all 𝒘1,𝒘2 ∈ 𝐖ℎ. In this way, using estimate (4.16) we obtain that ℎ is a contraction mapping on 𝐖ℎ, thus problem (4.12), or
quivalently (4.7) is wellposed. Finally, estimate (4.17) is obtained analogously to (3.13), which completes the proof. □

. A priori error estimates

In this section, we aim to provide the convergence of the Galerkin scheme (4.7) and derive the corresponding rate of convergence.

.1. Preliminaries

From now on we assume that the hypotheses of Theorem 3.1 and Theorem 4.1 hold and let ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙 and
(𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ be the unique solutions of (2.3) and (4.7), respectively.

Then, similarly to [31], in order to simplify the subsequent analysis, we write 𝚎𝒅 = 𝒅−𝒅ℎ, 𝚎𝝈 = 𝝈−𝝈ℎ and 𝚎𝒖 = 𝒖−𝒖ℎ. As usual,
for a given (𝒆̂ℎ,𝝈ℎ) ∈ 𝐗ℎ × 𝐘ℎ and 𝒗̂ℎ ∈ 𝐙ℎ, we shall then decompose these errors into

𝚎𝒅 = 𝝃𝒅 + 𝝌𝒅 , 𝚎𝝈 = 𝝃𝝈 + 𝝌𝝈 , 𝚎𝒖 = 𝝃𝒖 + 𝝌𝒖, (5.1)

ith

𝝃𝒅 ∶= 𝒅 − 𝒆̂ℎ, 𝝌𝒅 ∶= 𝒆̂ℎ − 𝒅ℎ, 𝝃𝝈 ∶= 𝝈 − 𝝉̂ℎ, 𝝌𝝈 ∶= 𝝉̂ℎ − 𝝈ℎ, 𝝃𝒖 ∶= 𝒖 − 𝒗̂ℎ, 𝝌𝒖 ∶= 𝒗̂ℎ − 𝒖ℎ.

ecalling the definition of the bilinear form 𝐴𝒘 in (3.10), from (2.3) and (4.7) we have that the following identities hold

𝐴𝒅((𝒅,𝝈), (𝒆, 𝝉)) + 𝑏2((𝒆, 𝝉), 𝒖) + 𝑏2((𝒅,𝝈), 𝒗) = 𝐺(𝒆) +𝐻(𝝉) + 𝐹 (𝒗),

or all ((𝒆, 𝝉), 𝒗) ∈ (𝐗 × 𝐘) × 𝐙, and

𝐴𝒅ℎ
((𝒅ℎ,𝝈ℎ), (𝒆ℎ, 𝝉ℎ)) + 𝑏2((𝒆ℎ, 𝝉ℎ), 𝒖ℎ) + 𝑏2((𝒅ℎ,𝝈ℎ), 𝒗ℎ) = 𝐺(𝒆ℎ) +𝐻(𝝉ℎ) + 𝐹 (𝒗ℎ).

or all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ. From these relations, and similarly to (3.16), we can obtain that for all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈
(𝐗ℎ × 𝐘ℎ) × 𝐙ℎ, there holds

𝐴𝒅ℎ
((𝚎𝒅 , 𝚎𝝈 ), (𝒆ℎ, 𝝉ℎ)) + 𝑏2((𝒆ℎ, 𝝉ℎ), 𝚎𝒖) + 𝑏2((𝚎𝒅 , 𝚎𝝈 ), 𝒗ℎ) = ∫𝛺

(𝜅(𝒅ℎ) − 𝜅(𝒅))∇𝑝 ⋅ ∇𝑞ℎ,

hich together with the definition of the errors in (5.1), implies that

𝐴𝒅ℎ
((𝝌𝒅 ,𝝌𝝈 ), (𝒆ℎ, 𝝉ℎ)) + 𝑏2((𝒆ℎ, 𝝉ℎ),𝝌𝒖) + 𝑏2((𝝌𝒅 ,𝝌𝝈 ), 𝒗ℎ)

= −𝐴𝒅ℎ
((𝝃𝒅 , 𝝃𝝈 ), (𝒆ℎ, 𝝉ℎ)) − 𝑏2((𝒆ℎ, 𝝉ℎ), 𝝃𝒖) − 𝑏2((𝝃𝒅 , 𝝃𝝈 ), 𝒗ℎ) + ∫𝛺

(𝜅(𝒅ℎ) − 𝜅(𝒅))∇𝑝 ⋅ ∇𝑞ℎ,
(5.2)

or all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ. Then, since 𝒅ℎ ∈ 𝐖ℎ, we apply the discrete inf-sup condition (4.15) at the left-hand side of
(5.2) followed by the continuity properties of 𝑎, 𝑏1 and 𝑏2 (cf. (3.4) and (2.4a)) on the right-hand side of (5.2), to obtain

‖𝝌𝒅‖𝐗 + ‖𝝌𝝈‖𝐘 + ‖𝝌𝒖‖𝐙

≤ 𝛾∗1
(

(𝐶𝑎 + 2)
(

‖𝝃𝒅‖𝐗 + ‖𝝃𝝈‖𝐘 + ‖𝝃𝒖‖𝐙
)

+ 𝜅2‖𝑝ℎ − 𝑝‖1,𝛺‖∇𝑝‖0,𝛺
)

≤ 𝛾∗
(

(𝐶 + 2)
(

‖𝝃 ‖ + ‖𝝃 ‖ + ‖𝝃 ‖

)

+ 𝜅 (‖𝝃 ‖ + ‖𝝌 ‖ )‖𝒅‖
)

.

(5.3)
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5.2. Derivation of Céa estimates

Now we turn to providing a best approximation estimate corresponding with the Galerkin scheme (4.7).

heorem 5.1. Assume that

𝜅2𝛾
∗
1 𝛾1

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

≤ 1
2
, (5.4)

ith 𝛾1 and 𝛾∗1 being the constants in (3.12) and (4.14). Furthermore, assume that the hypotheses of Theorem 3.1 and Theorem 4.1 hold.
Let ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙 and ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ be the unique solutions of (2.3) and (4.7), respectively. Then, there exists
𝐶Céa > 0, such that

‖((𝒅,𝝈), 𝒖) − ((𝒅ℎ,𝝈ℎ), 𝒖ℎ)‖ ≤ 𝐶Céa inf
((𝒆ℎ ,𝝉ℎ),𝒗ℎ)∈(𝐗ℎ×𝐘ℎ)×𝐙ℎ

‖((𝒅,𝝈), 𝒖) − ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ)‖. (5.5)

roof. From (5.3) we have

‖𝝌𝒅‖𝐗
(

1 − 𝜅2 𝛾∗1 ‖𝒅‖𝐗
)

+ ‖𝝌𝝈‖𝐘 + ‖𝝌𝒖‖𝐙

≤ 𝛾∗1
(

(𝐶𝑎 + 2)
(

‖𝝃𝒅‖𝐗 + ‖𝝃𝝈‖𝐘 + ‖𝝃𝒖‖𝐙
)

+ 𝜅2‖𝝃𝒅‖𝐗‖𝒅‖𝐗
)

.
(5.6)

ence, using the fact that 𝒅 satisfies (3.13), from assumption (5.4) and the latter inequality, we obtain

‖𝝌𝒅‖𝐗 + ‖𝝌𝝈‖𝐘 + ‖𝝌𝒖‖𝐙 ≤ 𝐶 ( ‖𝝃𝒅‖𝐗 + ‖𝝃𝝈‖𝐘 + ‖𝝃𝝈‖𝐙 ), (5.7)

with 𝐶 > 0 independent of ℎ. In this way, from (5.1), (5.7) and the triangle inequality we obtain

‖((𝚎𝒅 , 𝚎𝝈 ), 𝚎𝒖)‖ ≤ ‖((𝝌𝒅 ,𝝌𝝈 ),𝝌𝒖)‖ + ‖((𝝃𝒅 , 𝝃𝝈 ), 𝝃𝒖)‖ ≤ (𝐶 + 1)‖((𝝃𝒅 , 𝝃𝝈 ), 𝝃𝒖)‖,

which combined with the fact that (𝒆̂ℎ,𝝈ℎ) ∈ 𝐗ℎ × 𝐘ℎ and 𝒗̂ℎ ∈ 𝐙ℎ are arbitrary, concludes the proof. □

Remark 5.1. We note that, alternatively to the development in Theorem 5.1 above, we could proceed as in the proof of [44,
Lemma 2.25] and apply a Strang-type argument to obtain Céa’s estimate. In addition, using the estimates (3.13) and (5.6) together
with the assumption (5.4), we can obtain the following estimate for the Céa’s constant 𝐶Céa = 2(𝛾∗1 (𝐶𝑎 + 2) + 1).

5.3. Rates of convergence

In order to establish the rate of convergence of the Galerkin scheme (4.7), we first recall the following approximation properties
𝐀𝐏 (interpolation estimates of Sobolev spaces for the twofold saddle-points for the poroelastic stress symmetry imposed strongly)
associated with the finite element spaces specified in Section 4.1.
(𝐀𝐏𝒅

ℎ ) For each 1 ≤ 𝑚 ≤ 𝑘 + 2 and for each 𝒆 ∈ H𝑚(𝛺) ∩ L2
sym(𝛺), there holds

dist
(

𝒆,𝐗1,ℎ
)

∶= inf
𝒆ℎ∈𝐗1,ℎ

‖𝒆 − 𝒆ℎ‖0,𝛺 ≲ ℎ𝑚 ‖𝒆‖𝑚,𝛺 . (5.8a)

(𝐀𝐏𝑝
ℎ) For each 0 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝑞 ∈ H𝑚+1(𝛺), there holds

dist
(

𝑞,𝐗2,ℎ
)

∶= inf
𝑞ℎ∈𝐗2,ℎ

‖𝑞 − 𝑞ℎ‖1,𝛺 ≲ ℎ𝑚 ‖𝑞‖𝑚+1,𝛺 . (5.8b)

(𝐀𝐏𝝈
ℎ ) For each 1 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝝉 ∈ H𝑚(𝛺) ∩Hsym(𝐝𝐢𝐯;𝛺) with 𝐝𝐢𝐯 𝝉 ∈ 𝐇𝑚(𝛺), there holds

dist
(

𝝉 ,𝐘ℎ
)

∶= inf
𝝉ℎ∈𝐘ℎ

‖𝝉 − 𝝉ℎ‖𝐝𝐢𝐯,𝛺 ≲ ℎ𝑚
{

‖𝝉‖𝑚,𝛺 + ‖𝐝𝐢𝐯 𝝉‖𝑚,𝛺
}

. (5.8c)

(𝐀𝐏𝒖
ℎ) For each 1 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝒗 ∈ 𝐇𝑚+1(𝛺), there holds

dist
(

𝒗,𝐙ℎ
)

∶= inf
𝒗ℎ∈𝐙ℎ

‖𝒗 − 𝒗ℎ‖0,𝛺 ≲ ℎ𝑚 ‖𝒗‖𝑚+1,𝛺 . (5.8d)

For (5.8a), (5.8c) and (5.8d) we refer to [34, Theorem 6.1], whereas (5.8b) can be found in [44, Corollary 1.128].
With these steps we are now in position to state the rates of convergence associated with the Galerkin scheme (4.7).

Theorem 5.2. Assume that the hypotheses of Theorem 5.1 hold and let ((𝒅,𝝈), 𝒖) ∈ (𝐗 × 𝐘) × 𝐙 and ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗ℎ × 𝐘ℎ) × 𝐙ℎ be
the unique solutions of the continuous and discrete problems (2.3) and (4.7), respectively. Assume further that 𝒅 ∈ H𝑚(𝛺), 𝑝 ∈ H𝑚+1(𝛺),
𝝈 ∈ H𝑚(𝛺), 𝐝𝐢𝐯𝝈 ∈ 𝐇𝑚(𝛺) and 𝒖 ∈ 𝐇𝑚+1(𝛺), for 1 ≤ 𝑚 ≤ 𝑘 + 1. Then there exists 𝐶𝑟𝑎𝑡𝑒 > 0, independent of ℎ, such that

‖((𝚎𝒅 , 𝚎𝝈 ), 𝚎𝒖)‖ ≤ 𝐶𝑟𝑎𝑡𝑒 ℎ
𝑚
{

‖𝒅‖𝑚,𝛺 + ‖𝑝‖𝑚+1,𝛺 + ‖𝝈‖𝑚,𝛺 + ‖𝐝𝐢𝐯𝝈‖𝑚,𝛺 + ‖𝒖‖𝑚+1,𝛺
}

.

Proof. The result is a straightforward application of Theorem 5.1 and the approximation properties (𝐀𝐏𝒅
ℎ ), (𝐀𝐏𝑝

ℎ), (𝐀𝐏𝝈
ℎ ), and

𝐀𝐏𝒖). □
11
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6. A five-field mixed formulation

In this section, we present a second formulation, the weak formulation we treat here results from imposing the symmetry of the
oroelastic stress in a weak manner (see, e.g., [45] for the general idea and [13] for the application in the context of poroelasticity
ut leading to a different formulation). We mention in advance that the well-posedness analysis, for both the continuous and discrete
roblems, follows straightforwardly by adapting the results derived in Sections 3 and 4, reason why most of the details are omitted.

To weakly impose the symmetry of stress, it is customary to introduce the rotation tensor

𝜸 = 1
2
(∇𝒖 − [∇𝒖]𝚝) = ∇𝒖 − 𝒅, (6.1)

nd we can then rewrite the strong form of the coupled PDE system in mixed form as

−𝐝𝐢𝐯𝝈 = 𝒇 in 𝛺, 𝝈 = 𝝈𝚝 in 𝛺, 𝜸 = ∇𝒖 − 𝒅 in 𝛺,

𝝈 = 𝒅 − 𝛼𝑝I, in 𝛺, 𝑐0𝑝 + 𝛼 tr 𝒅 − div(𝜅(𝒅, 𝑝)∇𝑝) = 𝑔, in 𝛺,

𝒖 = 𝒖𝛤 on 𝛤 , 𝜅(𝒅, 𝑝)∇𝑝 ⋅ 𝒏 = 𝑟𝛤 on 𝛤 .

(6.2)

fter testing these equations by 𝒗 ∈ 𝐋2(𝛺), 𝜼 ∈ L2
skew(𝛺), 𝝉 ∈ H(𝐝𝐢𝐯;𝛺), 𝒆 ∈ L2(𝛺), and 𝑞 ∈ H1(𝛺), respectively; we integrate by

arts and use (1.7) as natural boundary conditions to obtain the system

−∫𝛺
𝒗 ⋅ 𝐝𝐢𝐯𝝈 = ∫𝛺

𝒇 ⋅ 𝒗 ∀ 𝒗 ∈ 𝐋2(𝛺),

−∫𝛺
𝝉 ∶ 𝒅 − ∫𝛺

𝒖 ⋅ 𝐝𝐢𝐯 𝝉 − ∫𝛺
𝝉 ∶ 𝜸 = −⟨𝝉𝒏, 𝒖𝛤 ⟩𝛤 ∀ 𝝉 ∈ H(𝐝𝐢𝐯;𝛺),

∫𝛺
𝒅 ∶ 𝒆 − 𝛼 ∫𝛺

𝑝 tr 𝒆 − ∫𝛺
𝝈 ∶ 𝒆 = 0 ∀ 𝒆 ∈ L2(𝛺),

∫𝛺
𝜅(𝒅, 𝑝)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺

𝑝 𝑞 + 𝛼 ∫𝛺
𝑞 tr 𝒅 = ∫𝛺

𝑔 𝑞 + ⟨𝑟𝛤 , 𝑞⟩𝛤 ∀ 𝑞 ∈ H1(𝛺),

−∫𝛺
𝝈 ∶ 𝜼 = 0 ∀ 𝜼 ∈ L2

skew(𝛺).

Proceeding similarly as in the derivation of (2.3), we group spaces, unknowns and test functions as follows:

𝐗̃ ∶= L2(𝛺) × H1(𝛺), 𝐘̃ ∶= H(𝐝𝐢𝐯;𝛺), 𝐙̃ ∶= 𝐋2(𝛺) × L2
skew(𝛺),

𝒅 ∶= (𝒅, 𝑝) ∈ 𝐗̃, 𝝈 ∈ 𝐘̃, 𝒖 ∶= (𝒖, 𝜸) ∈ 𝐙̃,

𝒆 ∶= (𝒆, 𝑞) ∈ 𝐗̃, 𝝉 ∈ 𝐘̃, 𝒗 ∶= (𝒗, 𝜼) ∈ 𝐙̃,

here 𝐗̃, 𝐘̃, 𝐗̃ × 𝐘̃ and 𝐙̃ are endowed with the norms

‖𝒆‖2
𝐗̃
∶= ‖𝒆‖20,𝛺 + ‖𝑞‖21,𝛺 , ‖𝝉‖𝐘̃ ∶= ‖𝝉‖𝐝𝐢𝐯,𝛺 , ‖(𝒆, 𝝉)‖2

𝐗̃×𝐘̃
∶= ‖𝒆‖2

𝐗̃
+ ‖𝝉‖2

𝐘̃
,

‖𝒗‖2
𝐙̃
∶= ‖𝒗‖20,𝛺 + ‖𝜼‖20,𝛺 , ‖((𝒆, 𝝉), 𝒗)‖2 ∶= ‖(𝒆, 𝝉)‖2𝐗̃×𝐘̃ + ‖𝒗‖2

𝐙̃
.

Next, we define the weak forms 𝑎̃ ∶ 𝐗̃ × 𝐗̃ → R, 𝑏̃1 ∶ 𝐗̃ × 𝐘̃ → R and 𝑏̃2 ∶ (𝐗̃ × 𝐘̃) × 𝐙̃ → R from the expressions

𝑎̃(𝒅, 𝒆) ∶= ∫𝛺
𝒅 ∶ 𝒆 + ∫𝛺

𝜅(𝒅)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺
𝑝 𝑞 + 𝛼 ∫𝛺

𝑞 tr 𝒅 − 𝛼 ∫𝛺
𝑝 tr 𝒆,

𝑏̃1(𝒆, 𝝉) ∶= −∫𝛺
𝝉 ∶ 𝒆,

𝑏̃2((𝒆, 𝝉), 𝒗) ∶= −∫𝛺
𝒗 ⋅ 𝐝𝐢𝐯 𝝉 − ∫𝛺

𝝉 ∶ 𝜼,

(6.3)

espectively, and the linear functionals 𝐺 ∈ 𝐗̃′, 𝐻̃ ∈ 𝐘̃′ and 𝐹 ∈ 𝐙̃′ as

𝐺(𝒆) ∶= ∫𝛺
𝑔 𝑞 + ⟨𝑟𝛤 , 𝑞⟩𝛤 , 𝐻̃(𝝉) ∶= −⟨𝝉𝒏, 𝒖𝛤 ⟩𝛤 , 𝐹 (𝒗) ∶= ∫𝛺

𝒇 ⋅ 𝒗,

respectively, so that the weak formulation of the nonlinear coupled system (6.2) reads: Find ((𝒅,𝝈), 𝒖) ∈ (𝐗̃ × 𝐘̃) × 𝐙̃ such that

𝑎̃(𝒅, 𝒆) + 𝑏̃1(𝒆,𝝈) = 𝐺(𝒆),

𝑏̃1(𝒅, 𝝉) + 𝑏̃2((𝒆, 𝝉), 𝒖) = 𝐻̃(𝝉),

𝑏̃2((𝒅,𝝈), 𝒗) = 𝐹 (𝒗),

(6.4)

for all ((𝒆, 𝝉), 𝒗) ∈ (𝐗̃ × 𝐘̃) × 𝐙̃.
12
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Similarly to Section 2.2, we have that the bilinear forms 𝑏̃1, 𝑏̃2, and the functionals 𝐺, 𝐻̃ and 𝐹 are bounded. In addition, the
kernel of the bilinear form 𝑏̃2 can be characterised by

𝐗̃ × 𝐘0, (6.5)

with 𝐘0 defined as in (2.7), this is

𝐘0 ∶= {𝝉 ∈ 𝐘 ∶ 𝐝𝐢𝐯 𝝉 = 𝟎} = {𝝉 ∈ 𝐘̃ ∶ 𝐝𝐢𝐯 𝝉 = 𝟎 and 𝝉 = 𝝉𝚝}. (6.6)

On the other hand, from [45, Section 3.4.3.1] we have that there exists 𝛽𝑏̃2 > 0 such that

sup
𝟎≠(𝒆,𝝉)∈𝐗̃×𝐘̃

𝑏̃2((𝒆, 𝝉), 𝒗)
‖(𝒆, 𝝉)‖𝐗̃×𝐘̃

≥ 𝛽𝑏̃2 ‖𝒗‖𝐙̃ ∀ 𝒗 ∈ 𝐙̃. (6.7)

n addition, similarly to (2.9), we note that for all 𝝉 ∈ 𝐘0, it suffices to take 𝒆 = 𝝉 to easily arrive at

sup
𝟎≠𝒆∈𝐗̃

𝑏̃1(𝒆, 𝝉)
‖𝒆‖𝐗̃

≥ ‖𝝉‖𝐘̃ ∀ 𝝉 ∈ 𝐘0. (6.8)

Next, similarly to Section 3.2, for a given 𝑟 > 0, let us define the bounded set

𝐖 ∶=
{

𝒘 ∶= (𝒘, 𝑠) ∈ 𝐗̃ ∶ ‖𝒘‖𝐗̃ ≤ 𝑟
}

, (6.9)

hen, for a fixed 𝒘 ∶= (𝒘, 𝑠) in 𝐖, we define the bilinear form 𝑎̃𝒘 ∶ 𝐗̃ × 𝐗̃ → R as follows

𝑎̃𝒘(𝒅, 𝒆) ∶= ∫𝛺
𝒅 ∶ 𝒆 + ∫𝛺

𝜅(𝒘)∇𝑝 ⋅ ∇𝑞 + 𝑐0 ∫𝛺
𝑝 𝑞 + 𝛼 ∫𝛺

𝑞 tr 𝒅 − 𝛼 ∫𝛺
𝑝 tr 𝒆, ∀𝒅, 𝒆 ∈ 𝐗̃. (6.10)

ssuming the properties (3.1) hold for the nonlinear permeability, for all 𝒅 and 𝒆 in 𝐗̃, the following holds
|

|

|

𝑎̃𝒘(𝒅, 𝒆)
|

|

|

≤ 𝐶𝑎‖𝒅‖𝐗̃‖𝒆‖𝐗̃ and 𝑎̃𝒘(𝒆, 𝒆) ≥ 𝑐𝑎‖𝒆‖2𝐗̃, (6.11)

ith 𝐶𝑎 and 𝑐𝑎 defined as in (3.6).
By adapting the fixed-point strategy introduced in Section 3.2 to the present case, proceeding similarly to Lemma 3.1 to analyse

he linearised system, employing the stability properties of the forms 𝑏̃1, 𝑏̃2 and 𝑎̃𝒘, it can be proved the well-posedness of (6.4).

Theorem 6.1. Let 𝒇 ∈ 𝐋2(𝛺), 𝑔 ∈ 𝐿2(𝛺), 𝒖𝛤 ∈ 𝐇1∕2(𝛤 ) and 𝑟𝛤 ∈ H−1∕2(𝛤 ) such that
𝛾̃1
𝑟
max{𝛾̃1 𝜅2 𝑟, 1}

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

< 1, (6.12)

here

𝛾̃1 ∶=
(𝐶𝑎 + 1 + 𝛽2 + 𝛾2)2

𝛽22 𝛾2
, (6.13)

ith 𝛾2 defined in (3.12). Then, the problem (6.4) has a unique solution ((𝒅,𝝈), 𝒖) ∈ 𝐗̃ × 𝐘̃ × 𝐙̃ with 𝒅 ∈ 𝐖. In addition, there holds

‖(𝒅,𝝈), 𝒖‖ ≲ ‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺 . (6.14)

roof. The proof follows using the same steps employed to prove Theorem 3.1. □

For the Galerkin scheme of problem (6.4), we consider the same space 𝐗2,ℎ (cf. (4.1)) for fluid pressure.
For each 𝐾 ∈ ℎ we consider the bubble space of order 𝑘, defined as

𝐁𝑘(𝐾) ∶=

{

𝐜𝐮𝐫𝐥t (𝑏𝐾P𝑘(𝐾)) in R2,
∇ × (𝑏𝐾𝐏𝑘(𝐾)) in R3,

where 𝑏𝐾 is a suitably normalised cubic polynomial on 𝐾, which vanishes on the boundary of 𝐾 (see [44]).
Next, we recall that the classical PEERS elements are described in [35]:

𝐘̃ℎ ∶=
{

𝝉ℎ ∈ H(𝐝𝐢𝐯, 𝛺) ∶ 𝝉ℎ|𝐾 ∈ RT𝑘(𝐾)⊕ [𝐁𝑘(𝐾)]𝑑 ∀𝐾 ∈ ℎ
}

,

𝐙̃1,ℎ ∶=
{

𝒗ℎ ∈ 𝐋2(𝛺) ∶ 𝒗ℎ|𝐾 ∈ 𝐏𝑘(𝐾) ∀𝐾 ∈ ℎ
}

, (6.15)

𝐙̃2,ℎ ∶=
{

𝜼ℎ ∈ L2
skew(𝛺) ∩ 𝐂(𝛺) and 𝜼ℎ|𝐾 ∈ P𝑘+1(𝐾) ∀𝐾 ∈ ℎ

}

,

nd are inf-sup stable for the bilinear form 𝑏̃2. In addition, and according to [27], they are inf-sup stable together with the space

𝐗̃1,ℎ ∶=
{

𝒆ℎ ∈ L2(𝛺) ∶ 𝒆ℎ|𝐾 ∈ P𝑘(𝐾)⊕ [𝐁𝑘(𝐾)]𝑑 ∀𝐾 ∈ ℎ
}

, (6.16)

with respect to 𝑏 (see also [28,30] where also the deviatoric part of the bubble functions is used in the enrichment).
13
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Moreover, Arnold–Falk–Winther finite elements are in [36]:

𝐘̃ℎ ∶=
{

𝝉ℎ ∈ H(𝐝𝐢𝐯, 𝛺) ∶ 𝝉ℎ|𝐾 ∈ BDM𝑘+1(𝐾) ∀𝐾 ∈ ℎ
}

,

𝐙̃1,ℎ ∶=
{

𝒗ℎ ∈ 𝐋2(𝛺) ∶ 𝒗ℎ|𝐾 ∈ 𝐏𝑘(𝐾) ∀𝐾 ∈ ℎ
}

, (6.17)
𝐙̃2,ℎ ∶=

{

𝜼ℎ ∈ L2
skew(𝛺) ∶ 𝜼ℎ|𝐾 ∈ P𝑘(𝐾) ∀𝐾 ∈ ℎ

}

,

and, together with the space

𝐗̃1,ℎ ∶=
{

𝒆ℎ ∈ L2(𝛺) ∶ 𝒆ℎ|𝐾 ∈ BDM𝑘+1(𝐾) ∀𝐾 ∈ ℎ
}

, (6.18)

they are inf-sup stable with respect to the bilinear forms 𝑏̃2 and 𝑏̃1.
In what follows, we will develop the analysis with the subspaces defined in (6.15)–(6.16). The analysis for the subspaces defined

in (6.17)–(6.18) is conducted in an analogous manner.
Let us denote the product spaces 𝐗̃ℎ ∶= 𝐗̃1,ℎ ×𝐗2,ℎ and 𝐙̃ℎ ∶= 𝐙̃1,ℎ × 𝐙̃2,ℎ, and note that the finite element subspaces 𝐗̃ℎ × 𝐘̃ℎ × 𝐙̃ℎ

are inf-sup stable for the bilinear form 𝑏̃2 (cf. [45, Section 4.5])

sup
𝟎≠(𝒆ℎ ,𝝉ℎ)∈𝐗̃ℎ×𝐘̃ℎ

𝑏̃2((𝒆ℎ, 𝝉ℎ), 𝒗ℎ)
‖(𝒆ℎ, 𝝉ℎ)‖𝐗̃×𝐘̃

≥ 𝛽∗𝑏2 ‖𝒗ℎ‖𝐙̃ ∀ 𝒗ℎ ∈ 𝐙̃ℎ. (6.19)

n addition, it is straightforward to see that the kernel of the bilinear form 𝑏̃2 can be characterised by

𝐗̃ℎ × 𝐘̃ℎ,0, with 𝐘̃ℎ,0 = {𝝉ℎ ∈ 𝐘̃ℎ ∶ 𝐝𝐢𝐯 𝝉ℎ = 𝟎 and 𝝉 = 𝝉𝚝}, (6.20)

nd, similarly to (4.6), using that 𝐘̃ℎ,0 ⊂ 𝐗̃1,ℎ, we can take 𝒆ℎ = 𝝉ℎ to conclude that 𝑏̃1 satisfies the inf-sup condition

sup
𝟎≠𝒆ℎ∈𝐗̃ℎ

𝑏̃1(𝒆ℎ, 𝝉ℎ)
‖𝒆ℎ‖𝐗̃

≥ ‖𝝉ℎ‖𝐘̃ ∀ 𝝉ℎ ∈ 𝐘̃0,ℎ. (6.21)

Finally, the scheme associated with the weak formulation (6.4) consists in finding ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗̃ℎ × 𝐘̃ℎ) × 𝐙̃ℎ such that

𝑎̃(𝒅ℎ, 𝒆ℎ) + 𝑏̃1(𝒆ℎ,𝝈ℎ) = 𝐺(𝒆ℎ),

𝑏̃1(𝒅ℎ, 𝝉ℎ) + 𝑏̃2((𝒆ℎ, 𝝉ℎ), 𝒖ℎ) = 𝐻̃(𝝉ℎ),

𝑏̃2((𝒅ℎ,𝝈ℎ), 𝒗ℎ) = 𝐹 (𝒗ℎ),

(6.22)

or all ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ) ∈ (𝐗̃ℎ × 𝐘̃ℎ) × 𝐙̃ℎ, with 𝒅ℎ = (𝒅ℎ, 𝑝ℎ), 𝒆ℎ = (𝒆ℎ, 𝑞ℎ), 𝒖ℎ = (𝒖ℎ, 𝜸ℎ) and 𝒗ℎ = (𝒗ℎ, 𝜼ℎ).

Remark 6.1. Due to the definition of the bilinear forms 𝑏1, 𝑏2, 𝑏̃1 and 𝑏̃2 (cf. (2.2) and (6.3)), the subspaces 𝐗1,ℎ and 𝐗̃1,ℎ, defined
in (4.3) and (6.16) (or (6.18)), can be chosen in many ways; it is sufficient that 𝐝𝐢𝐯𝐘ℎ ⊆ 𝐗1,ℎ and 𝐝𝐢𝐯 𝐘̃ℎ ⊆ 𝐗̃1,ℎ, with this,
the inf-sup condition of 𝑏1 and 𝑏̃1 in the kernel of 𝑏2 and 𝑏̃2, respectively, can be ensured. For example, we can take the space
𝐗1,ℎ ∶=

{

𝒆ℎ ∈ L2
sym(𝛺) ∶ 𝝉ℎ|𝐾 ∈ P𝑘+2(𝐾) ∀𝐾 ∈ ℎ

}

, to approximate the strain tensor in the first Galerkin scheme, but it is more
expensive.

To establish the unique solvability of (6.22), following a similar approach as in Section 4.2, we define the following set:

𝐖ℎ ∶=
{

𝒘ℎ ∶= (𝒘ℎ, 𝑠ℎ) ∈ 𝐗̃ℎ ∶ ‖𝒘ℎ‖𝐗̃ ≤ 𝑟
}

. (6.23)

ext, for a fixed 𝒘ℎ ∶= (𝒘ℎ, 𝑠ℎ) in 𝐖ℎ, we have that the bilinear form 𝑎𝒘 defined in (6.10), satisfies:

𝑎̃𝒘ℎ
(𝒆ℎ, 𝒆ℎ) ≥ 𝑐𝑎‖𝒆ℎ‖

2
𝐗̃

∀ 𝒆ℎ ∈ 𝐗̃ℎ. (6.24)

Using arguments analogous to those of Theorem 3.1 (see also Theorem 4.1), and the properties (6.19), (6.21), and (6.24) of the
ilinear forms 𝑏̃2, 𝑏̃1, and 𝑎̃𝒘ℎ

, adapting the fixed-point strategy introduced in Section 3.2 (see also Section 4.2) to the present case,
e can assert the following result.

heorem 6.2. Let 𝒇 ∈ 𝐋2(𝛺), 𝑔 ∈ 𝐿2(𝛺), 𝒖𝛤 ∈ 𝐇1∕2(𝛤 ) and 𝑟𝛤 ∈ H−1∕2(𝛤 ) such that
𝛾̃∗1
𝑟

max{𝛾̃∗1 𝜅2 𝑟, 1}
(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

< 1, (6.25)

where 𝛾̃∗1 is the discrete counterpart of 𝛾̃1 (cf. (6.13)), defined by

𝛾̃∗1 ∶=
(𝐶𝑎 + 1 + 𝛽∗2 + 𝛾2)2

(𝛽∗2 )
2 𝛾2

, (6.26)

nd with 𝛾2 defined in (3.12). Then, problem (6.22) has a unique solution ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ 𝐗̃ℎ × 𝐘̃ℎ × 𝐙̃ℎ with 𝒅ℎ ∈ 𝐖ℎ. In addition, there
exists 𝐶̃∗ > 0 such that

,𝝈 ), 𝒖 ‖ ≤ 𝐶̃∗(
‖𝑔‖ + ‖𝑟 ‖ + ‖𝒖 ‖ + ‖𝒇‖

)

. (6.27)
14

‖(𝒅ℎ ℎ ℎ 0,𝛺 𝛤 −1∕2,𝛤 𝛤 1∕2,𝛤 0,𝛺
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Employing the same arguments utilised in Section 5.1 and Theorem 5.1, we can provide the Céa estimate corresponding to the
alerkin scheme (6.22).

heorem 6.3. Assume that

𝜅2𝛾̃
∗
1 𝛾̃1

(

‖𝑔‖0,𝛺 + ‖𝑟𝛤 ‖−1∕2,𝛤 + ‖𝒖𝛤 ‖1∕2,𝛤 + ‖𝒇‖0,𝛺
)

≤ 1
2
, (6.28)

ith 𝛾̃1 and 𝛾̃∗1 being the constants in (6.13) and (6.26). Assume that the hypotheses of Theorem 6.1 and Theorem 6.2 hold. Let
((𝒅,𝝈), 𝒖) ∈ (𝐗̃ × 𝐘̃) × 𝐙̃ and ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗̃ℎ × 𝐘̃ℎ) × 𝐙̃ℎ be the unique solutions of (6.4) and (6.22), respectively. Then, there exists
̃Céa > 0, such that

‖((𝒅,𝝈), 𝒖) − ((𝒅ℎ,𝝈ℎ), 𝒖ℎ)‖ ≤ 𝐶̃Céa inf
((𝒆ℎ ,𝝉ℎ),𝒗ℎ)∈(𝐗̃ℎ×𝐘̃ℎ)×𝐙̃ℎ

‖((𝒅,𝝈), 𝒖) − ((𝒆ℎ, 𝝉ℎ), 𝒗ℎ)‖, (6.29)

ith 𝐶̃Céa = 2(𝛾̃∗1 (𝐶𝑎 + 2) + 1).

On the other hand, we observe the following approximation properties related to spaces (6.15)–(6.16).
𝐀𝐏

𝒅
ℎ ) For each 0 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝒆 ∈ H𝑚(𝛺), there holds

dist
(

𝒆, 𝐗̃1,ℎ
)

∶= inf
𝒆ℎ∈𝐗̃1,ℎ

‖𝒆 − 𝒆ℎ‖0,𝛺 ≲ ℎ𝑚 ‖𝒆‖𝑚,𝛺 . (6.30a)

𝐀𝐏
𝑝
ℎ) Coincides with (𝐀𝐏𝑝

ℎ).
𝐀𝐏

𝝈
ℎ ) For each 0 < 𝑚 ≤ 𝑘 + 1 and for each 𝝉 ∈ H𝑚(𝛺) ∩H(𝐝𝐢𝐯;𝛺) with 𝐝𝐢𝐯 𝝉 ∈ 𝐇𝑚(𝛺), there holds

dist
(

𝝉 , 𝐘̃ℎ
)

∶= inf
𝝉ℎ∈𝐘̃ℎ

‖𝝉 − 𝝉ℎ‖𝑌 ≲ ℎ𝑚
{

‖𝝉‖𝑚,𝛺 + ‖𝐝𝐢𝐯 𝝉‖𝑚,𝛺
}

. (6.30b)

(𝐀𝐏
𝒖
ℎ) For each 0 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝒗 ∈ 𝐇𝑚(𝛺), there holds

dist
(

𝒗, 𝐙̃1,ℎ
)

∶= inf
𝒗ℎ∈𝐙̃1,ℎ

‖𝒗 − 𝒗ℎ‖0,𝛺 ≲ ℎ𝑚 ‖𝒗‖𝑚,𝛺 . (6.30c)

(𝐀𝐏
𝜸
ℎ) For each 0 ≤ 𝑚 ≤ 𝑘 + 1 and for each 𝜼 ∈ H𝑚(𝛺) ∩ L2

skew(𝛺), there holds

dist
(

𝜼, 𝐙̃2,ℎ
)

∶= inf
𝜼ℎ∈𝐙̃2,ℎ

‖𝜼 − 𝜼ℎ‖0,𝛺 ≲ ℎ𝑚 ‖𝜼‖𝑚,𝛺 . (6.30d)

For (6.30a), (6.30b), (6.30c) and (6.30d) we refer to [27, Theorem 2.4].

Theorem 6.4. Assume that the hypotheses of Theorem 6.3 hold and let ((𝒅,𝝈), 𝒖) ∈ 𝐗̃ × 𝐘̃ × 𝐙̃ and ((𝒅ℎ,𝝈ℎ), 𝒖ℎ) ∈ (𝐗̃ℎ × 𝐘̃ℎ) × 𝐙̃ℎ be
the unique solutions of the continuous and discrete problems (6.4) and (6.22), respectively. Assume further that 𝒅 ∈ H𝑚(𝛺), 𝑝 ∈ H𝑚+1(𝛺),
𝝈 ∈ H𝑚(𝛺), 𝐝𝐢𝐯𝝈 ∈ 𝐇𝑚(𝛺), 𝒖 ∈ 𝐇𝑚(𝛺) and 𝜸 ∈ H𝑚(𝛺), for 0 ≤ 𝑚 ≤ 𝑘 + 1. Then there exists 𝐶𝑟𝑎𝑡𝑒 > 0, independent of ℎ, such that

‖((𝚎𝒅 , 𝚎𝝈 ), 𝚎𝒖)‖ ≤ 𝐶𝑟𝑎𝑡𝑒 ℎ
𝑚
{

‖𝒅‖𝑚,𝛺 + ‖𝑝‖𝑚+1,𝛺 + ‖𝝈‖𝑚,𝛺 + ‖𝐝𝐢𝐯𝝈‖𝑚,𝛺 + ‖𝒖‖𝑚,𝛺 + ‖𝜸‖𝑚,𝛺
}

.

Proof. The result is a straightforward application of Theorem 6.3 and the approximation properties (𝐀𝐏
𝒅
ℎ ), (𝐀𝐏

𝑝
ℎ), (𝐀𝐏

𝝈
ℎ ), (𝐀𝐏

𝒖
ℎ) and

𝐀𝐏
𝜸
ℎ). □

. Numerical results

This section contains selected computational examples that serve to confirm the theoretically obtained convergence rates of the
wo analysed mixed finite element formulations. We showcase tests in 2D and 3D including experimental convergence as well as
n application-oriented simulation of filtration of interstitial fluid in soft tissue. The implementation has been carried out using the
inite element library Firedrake [49]. Each solve of the discrete nonlinear coupled system was performed using Newton–Raphson’s
ethod with iterations terminated whenever the absolute or the relative 𝓁∞−norm of the discrete residual in the product space drops

elow the fixed tolerance 10−7. Each linear system arising from linearisation was solved using the sparse LU factorisation algorithm
UMPS.

.1. Verification of convergence with respect to smooth solutions

First we conduct a test of convergence where model parameters assume the following values 𝜇 = 𝜆 = 𝜇𝑓 = 1 and 𝑐0 = 𝛼 = 1
4 .

The nonlinear permeability is taken as the second form in (1.6) (the Kozeny–Carman law) with 𝑘0 = 𝑘1 = 0.1. We use the following
closed-form smooth solutions to the primal form of the coupled nonlinear problem

𝒖 = 1
(

−𝑥1 cos(𝑥1) sin(𝑥2) + 𝑥21
2

)

, 𝑝 = sin(𝜋𝑥1) sin(𝜋𝑥2),
15

5 𝑥1 sin(𝑥1) cos(𝑥2) + 𝑥2
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Table 7.1
Verification of convergence for the method imposing stress symmetry strongly and using AW𝑘-based elements (using 𝑘 = 1: this gives polynomial degree 3 for
tress and strain and 1 for displacement). Errors and convergence rates are tabulated for strain, fluid pressure, poroelastic stress, and displacement. The symbol

in the first mesh refinement level indicates that no convergence rate is computed.
DoFs ℎ 𝚎0(𝒅) rate 𝚎1(𝑝) rate 𝚎𝐝𝐢𝐯(𝝈) rate 𝚎0(𝒖) rate

303 0.5000 1.5e−03 ⋆ 3.8e−01 ⋆ 8.4e−02 ⋆ 6.3e−03 ⋆
1063 0.2500 3.1e−04 2.24 1.2e−01 1.70 2.2e−02 1.92 1.6e−03 2.01
3975 0.1250 4.9e−05 2.68 3.2e−02 1.88 5.6e−03 1.98 3.9e−04 2.00
15367 0.0625 7.2e−06 2.76 8.2e−03 1.95 1.4e−03 2.00 9.8e−05 2.00
60423 0.0312 1.1e−06 2.72 2.1e−03 1.98 3.5e−04 2.00 2.5e−05 2.00
239623 0.0156 2.3e−07 2.03 5.3e−04 1.98 8.7e−05 2.00 6.1e−06 2.00

Table 7.2
Verification of convergence for the method imposing stress symmetry weakly and using PEERS𝑘 (6.15) and AFW𝑘 (6.17) elements with polynomial degrees 𝑘 = 0
nd 𝑘 = 1. Errors and convergence rates are tabulated for strain, fluid pressure, poroelastic stress, displacement, and rotation Lagrange multiplier. The ⋆ in the
irst mesh refinement level indicates that no convergence rate is computed.
DoFs ℎ 𝚎0(𝒅) rate 𝚎1(𝑝) rate 𝚎𝐝𝐢𝐯(𝝈) rate 𝚎0(𝒖) rate 𝚎0(𝜸) rate

PEERS𝑘-based FE scheme with 𝑘 = 0

130 0.7071 1.5e−01 ⋆ 1.1e+0 ⋆ 1.2e+0 ⋆ 4.6e−02 ⋆ 8.4e−02 ⋆
482 0.3536 9.4e−02 0.66 7.4e−01 0.62 6.3e−01 0.90 2.3e−02 0.99 4.9e−02 0.79
1858 0.1768 5.2e−02 0.86 4.1e−01 0.85 3.2e−01 0.98 1.1e−02 1.02 2.7e−02 0.83
7298 0.0884 2.6e−02 0.97 2.1e−01 0.95 1.6e−01 1.00 5.6e−03 1.01 1.1e−02 1.26
28930 0.0442 1.3e−02 1.00 1.1e−01 0.98 8.0e−02 1.00 2.8e−03 1.00 4.3e−03 1.42
115202 0.0221 6.6e−03 1.00 5.4e−02 1.00 4.0e−02 1.00 1.4e−03 1.00 1.5e−03 1.48

PEERS𝑘-based FE scheme with 𝑘 = 1

386 0.7071 2.3e−02 ⋆ 3.8e−01 ⋆ 3.4e−01 ⋆ 5.0e−03 ⋆ 9.5e−03 ⋆
1474 0.3536 8.1e−03 1.51 1.2e−01 1.70 9.0e−02 1.91 1.2e−03 2.02 3.1e−03 1.63
5762 0.1768 2.6e−03 1.66 3.2e−02 1.88 2.3e−02 1.97 3.0e−04 2.02 1.4e−03 1.64
22786 0.0884 7.3e−04 1.81 8.2e−03 1.95 5.8e−03 1.99 7.5e−05 2.02 4.9e−04 1.79
90626 0.0442 1.9e−04 1.91 2.1e−03 1.98 1.5e−03 1.99 1.9e−05 2.01 1.4e−04 1.89
361474 0.0221 5.0e−05 1.96 5.2e−04 1.99 3.7e−04 2.00 4.7e−06 2.00 3.8e−05 1.98

AFW𝑘-based FE scheme with 𝑘 = 0

161 0.7071 2.5e−02 ⋆ 1.1e+0 ⋆ 1.1e+0 ⋆ 4.4e−02 ⋆ 2.6e−02 ⋆
569 0.3536 1.5e−02 0.72 7.4e−01 0.62 5.7e−01 0.93 2.2e−02 0.98 1.4e−02 0.93
2129 0.1768 5.9e−03 1.35 4.1e−01 0.85 2.9e−01 0.99 1.1e−02 1.00 6.3e−03 1.09
8225 0.0884 2.4e−03 1.30 2.1e−01 0.95 1.5e−01 1.00 5.6e−03 1.00 3.1e−03 1.05
32321 0.0442 1.1e−03 1.13 1.1e−01 0.98 7.3e−02 1.00 2.8e−03 1.00 1.5e−03 1.02
128129 0.0221 5.4e−04 1.04 5.4e−02 1.00 3.6e−02 1.00 1.4e−03 1.00 7.5e−04 1.00

AFW𝑘-based FE scheme with 𝑘 = 1

385 0.7071 5.3e−03 ⋆ 3.8e−01 ⋆ 3.3e−01 ⋆ 4.8e−03 ⋆ 3.0e−03 ⋆
1425 0.3536 1.3e−03 2.05 1.2e−01 1.70 8.7e−02 1.92 1.2e−03 2.00 9.7e−04 1.65
5473 0.1768 2.1e−04 2.61 3.2e−02 1.88 2.2e−02 1.98 3.0e−04 2.00 1.9e−04 2.38
21441 0.0884 3.4e−05 2.62 8.2e−03 1.95 5.5e−03 2.00 7.5e−05 2.00 3.8e−05 2.30
84865 0.0442 6.5e−06 2.38 2.1e−03 1.98 1.4e−03 2.00 1.9e−05 2.00 8.7e−06 2.12
337665 0.0221 1.5e−06 2.15 5.2e−04 1.99 3.5e−04 2.00 4.7e−06 2.00 2.1e−06 2.04

which are used to generate exact mixed variables 𝒅,𝝈, 𝜸, and to produce non-homogeneous forcing term 𝒇 , boundary data 𝒖𝛤 , 𝑟𝛤 ,
and source term 𝑔. Seven successively refined meshes (congruent right-angled triangular partitions) are generated for the domain
𝛺 = (0, 1)2 and we compute errors between approximate and exact solutions 𝑒(⋅) (measured in the H1-norm for fluid pressure, in the
tensor H(𝐝𝐢𝐯)-norm for poroelastic Cauchy stress, and in the tensorial and vectorial 𝐿2-norms for strain, rotation, and displacement).
The experimental rates of convergence at each mesh refinement are computed as

𝚛𝚊𝚝𝚎(%) =
log(𝚎(%)∕𝚎′(%))

log(ℎ∕ℎ′)
,

with % ∈ {𝒅, 𝑝,𝝈, 𝒖, 𝜸}, and where 𝚎, 𝚎′ stand for errors generated on two consecutive meshes of sizes ℎ, ℎ′. The mixed finite element
methods are defined by the conforming AW𝑘, AFW𝑘, and PEERS𝑘-type of spaces specified in Section 6.

Tables 7.1–7.2 show the error history associated with the formulations with strong and weak symmetry imposition, and using
for the latter case the two lowest-order polynomial degrees. In all runs our results confirm an error decay with a convergence rate of
𝑂(ℎ𝑘+1) for all field variables in their natural norms, which is consistent with the theoretical error bounds from Theorems 5.2–6.4.
We also depict examples of approximate solutions computed with the PEERS𝑘-based finite element family (setting 𝑘 = 1). See
Fig. 7.1, where the panels show also the outline of the domain before the deformation.

We also include a test (only for the lowest-order AFW scheme) where we take small storativity and small permeability 𝑐0 = 10−8,
𝑘0 = 𝑘1 = 10−12. The error history in Table 7.3 indicates still an optimal convergence rate and suggesting that the method does not
16

have pressure locking.
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Fig. 7.1. Convergence tests. Approximate solutions computed with the second-order PEERS𝑘-based finite element scheme and rendered on the deformed
configuration. Only the non-trivial component of the rotation tensor is shown in the bottom-right panel.

Table 7.3
Verification of convergence for the method imposing stress symmetry weakly and using the lowest-order AFW𝑘 (6.17) elements, and taking small storativity

and permeability parameters. The ⋆ in the first mesh refinement level indicates that no convergence rate is computed.
DoFs ℎ 𝚎0(𝒅) rate 𝚎1(𝑝) rate 𝚎𝐝𝐢𝐯(𝝈) rate 𝚎0(𝒖) rate 𝚎0(𝜸) rate

AFW𝑘-based FE scheme with 𝑘 = 0

161 0.7071 2.3e−02 ⋆ 1.2e+0 ⋆ 3.3e−01 ⋆ 4.1e−02 ⋆ 2.9e−02 ⋆
569 0.3536 1.1e−02 1.05 8.1e−01 0.61 1.7e−01 0.99 2.1e−02 0.98 1.5e−02 0.98
2129 0.1768 5.3e−03 1.05 4.4e−01 0.89 8.4e−02 0.99 1.0e−02 0.99 7.4e−03 1.00
8225 0.0884 2.6e−03 1.02 2.2e−01 0.98 4.2e−02 1.00 5.2e−03 1.00 3.7e−03 1.00
32321 0.0442 1.3e−03 1.01 1.1e−01 1.00 2.1e−02 1.00 2.6e−03 1.00 1.9e−03 1.00
128129 0.0221 6.6e−04 1.00 5.6e−02 1.00 1.1e−02 1.00 1.3e−03 1.00 9.3e−04 1.00

7.2. Simulation of swelling of a porous structure

In the next test we replicate the swelling of a 3D block. The parameters and domain configuration are taken similarly to [50]
and we simulate this behaviour with the second-order AFW𝑘-based finite element method using (6.17)–(6.18). The domain is
𝛺 = (0, 1) × (0, 1) × (0, 12 ) and the deformation is induced by a fluid pressure gradient in the 𝑥1−direction (we impose 𝑝 = 104

at 𝑥1 = 0, 𝑝 = 0 at 𝑥1 = 1, and zero-flux conditions on the remainder of 𝛤 ). The poroelastic body is allowed to slide on the sides
𝑥1 = 0, 𝑥2 = 0 and 𝑥3 = 0 (these parts are called 𝛤slide), whereas zero normal stress is considered elsewhere on 𝛤 . The sliding
condition 𝒖 ⋅ 𝒏|𝛤slide = 0 is incorporated through the additional term

⟨(𝝉𝒏) × 𝒏, 𝒖 × 𝒏⟩𝛤slide ,

on the left-hand side of the second equation in the weak formulation (2.3) and taking 𝐻(𝝉) = 0. The model parameters for this
test are the exponential permeability in (1.6) with 𝑘0 = 10−9, 𝑘1 = 10−6, 𝑘2 = −0.5, the Young modulus 𝐸 = 8000, Poisson ratio
𝜈 = 0.3, storativity coefficient 𝑐0 = 0.001, Biot–Willis parameter 𝛼 = 0.5, fluid viscosity 𝜇𝑓 = 10−3, and we take zero body loads
and volumetric sources. Fig. 7.2 displays the approximate solutions rendered on the deformed configuration. We also show the
17
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Fig. 7.2. Swelling of a poroelastic block. Approximate infinitesimal strain magnitude, fluid pressure, poroelastic stress magnitude, displacement magnitude and
direction arrows, and permeability distribution.

contour of the undeformed domain for reference (the box with the light mesh shown in the background). The primary goal of this
example is to showcase the performance of the proposed method in a 3D setting. From the figure we can observe that the swelling
occurs in the 𝑥 and 𝑦 directions and the maximal displacements near the edge 𝑥 = 1 (away from the slip displacement boundaries)
are of approximately 20% of the domain diameter. Even if the permeability and pressure distribution are roughly linear in the 𝑥
direction, the poroelastic regime adopted here produces a stress magnitude showing a non-uniform pattern. Note also that there are
no nonphysically oscillating pressures.

7.3. Poroelastic filtration of slightly compressible trabecular meshwork

For our next example we consider a computational domain extracted and meshed from imaging of trabecular meshwork tissue
in the canine eye in [51]. The characteristic length of the domain is 6.8 ⋅10−3 [m]. In this test we use the strongly imposed symmetry
with AW𝑘-based finite elements (4.2)–(4.3), and take piecewise linear and overall continuous elements for the fluid pressure. We
set up an initial porosity field 𝜙0, randomly distributed between 0.3 and 0.45. A nonlinear permeability is prescribed depending on
that initial porosity and on fluid pressure and skeleton dilation

𝜅(𝒅, 𝑝) =
𝑘0
𝜇𝑓

+
𝑘1
𝜇𝑓

exp(−1
2
(𝜙0 + (1 − 𝜙0)[𝑐0𝑝 + 𝛼 tr 𝒅])) [in m2],

where the dependence on the total amount of fluid is taken similarly as in [9]. The model parameters for this test are 𝑘0 = 10−10,
𝑘1 = 10−7, the Lamé constants 𝜆 = 14388 [Pa], 𝜇 = 1102 [Pa], storativity coefficient 𝑐0 = 0.05, Biot–Willis parameter 𝛼 = 0.95, fluid
viscosity 𝜇𝑓 = 7.54−4 [Pa ⋅ s], and we take zero body loads and volumetric sources. The domain is assumed in contact, on a portion
of the boundary on the top-left end, with the anterior chamber in the eye and therefore we set a traction of 𝝈𝒏 = −3 × 10−3𝒏 and a
pore pressure 𝑝 = 2 × 103 [Pa]. On the outlet sub-boundary (a small region on the bottom-right end) we impose zero fluid pressure
and traction-free conditions, and on the remainder of the boundary we set zero displacements and zero flux for the fluid pressure.
From the results portrayed in Fig. 7.3 we observe that the pore pressure and strain concentration generation near the interfacial
region imply a smaller permeability, which progressively increases as one approaches the outlet boundary. This behaviour coincides
with the first round of tests with different permeability profiles explored in [51]. We also plot the off-diagonal entries of the Cauchy
stress to illustrate the balance of angular momentum, and on the bottom-right panel we can see the deformation of the interfacial
region and, as expected, a smaller expansion of the tissue towards the outlet.

7.4. Reproducing the mandel effect

To conclude this section, we utilise the proposed formulation, specifically focusing on the scenario of weakly symmetric stress,
to simulate Mandel’s effect (see, e.g., [52] or also [2,53–57]). Such a problem involves a specimen made of isotropic poroelastic
material, which is positioned between two rigid frictionless impervious plates at the top and bottom. The slab is infinitely long with
a cross section measuring 2𝐿×2𝐻 . The lateral sides of the specimen are free and permeable. In this simulation, a compressive force
is exerted on the horizontal plates. As a result, the pore pressure at the centre of the specimen surpasses its starting value during
the early stages of the process and subsequently diminishes until it reaches zero. This behaviour can be attributed to the drainage
18
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Fig. 7.3. Poroelastic filtration of trabecular meshwork tissue. Approximate infinitesimal strain magnitude, fluid pressure, nonlinear permeability (depending on
an initial randomly distributed porosity), two off-diagonal entries of the poroelastic stress, and displacement magnitude with direction arrows.

of fluid from the specimen through the side edges. Consequently, a greater portion of the applied load is transferred towards the
comparatively stiffer central region of the specimen.

To simplify the analysis, as usual, taking into account the symmetry of the geometry and problem set up, we only consider a
quarter of the entire domain: 𝛺 = (0, 𝐿)×(0,𝐻). This implies that the mechanical boundary conditions for the smaller domain 𝛺 are
as follows: on the boundary 𝑥 = 𝐿 the pore pressure is fixed at zero and the normal poroelastic stress is also zero (both imposed as
essential boundary conditions). At the boundaries 𝑥 = 0 and 𝑦 = 0 we impose a sliding condition 𝒖 ⋅𝒏 = 0 for which, as in Section 7.2,
the term −⟨(𝝉𝒏) ⋅ 𝒕, 𝒖 ⋅ 𝒕⟩ appears on the right-hand side of the weak form (where 𝒕 denotes the tangent vector to the boundary). A
downward force of magnitude 2𝐹 is applied to the top plate (the boundary 𝑦 = 𝐻) through the essential boundary condition for
poroelastic stress 𝝈𝒏 = (0,−𝐹 )𝚝. Zero-flux for the fluid phase is considered in all sub-boundaries except on 𝑥 = 𝐿. This problem takes
place in the quasi-steady regime and therefore we bring back in the time dependence, discretised using backward Euler’s method
with constant time step 𝛥𝑡 and running until 𝑇end, and necessitating an initial condition for pore pressure and strain (we initialise
them both to zero). A coarse mesh is used together with the AFW𝑘 finite element family with 𝑘 = 1, and following e.g. [58] (where
a thorough computational and experimental comparison is performed for poroelastic cartilage tissue in different regimes), we test
the behaviour of the models with constant and nonlinear permeabilities 𝜅 = 𝜅0 and 𝜅 = 𝑘0𝜅0 exp(𝑘1[𝑐0𝑝 + 𝛼 tr 𝒅]).

We set the geometry and model parameters within the ranges used in [55]

𝐿 = 𝐻 = 1 [m], 𝑇end = 1 [s], 𝛥𝑡 = 0.01 [s], 𝑐0 = 4 × 10−10 [Pa−1], 𝜅0 = 5.1 × 10−8 [m2],

𝑘0 = 5 [−], 𝑘1 = 30 [−], 𝛼 = 0.9 [−], 𝜇𝑓 = 10−3 [Pa ⋅ s], 𝜌 = 1 [Kg∕m3],

𝐸 = 103 [Pa], 𝜈 = 1
3
[−], 𝐹 = 100 [Pa], 𝒇 = 𝟎, 𝑔 = 0.

The results of the simulations are collected in Fig. 7.4, where we plot the profiles of pore pressure, horizontal displacement, principal
(axial) components of strain and of poroelastic stress over the horizontal mid-line of the domain (at 𝑦 = 𝐻∕2). The Mandel effect
is clearly visible in the first plot, and the difference (between linear and nonlinear cases) in pore pressure build up is similar as
the one observed in [58], that is, the nonlinear permeability produces a slightly lower pressure. Fig. 7.5 shows transients of the
main variables over time at two spatial points (the left end of the horizontal mid-line and the top-right corner). Qualitatively the
results agree with the expected behaviour in both linear and nonlinear regimes. We observe that the largest variation in the first
point occurs for the pore pressure drop, whereas for the second point the largest variation is seen in the axial poroelastic stress. For
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Fig. 7.4. Mandel’s test. Plot over the domain horizontal mid-line of axial and radial strains (first and last components of 𝒅) normalised through 𝑑∗ = 0.07 [–],
pore pressure profile normalised by 𝑝∗ = 60 [Pa], axial poroelastic stress normalised by 𝜎∗ = 4 [Pa], and patterns of horizontal an vertical velocities (in [m]), for
the constant and nonlinear permeability cases. The legend in the top-left panel (indicating the different times) applies to all panels in the figure.

Fig. 7.5. Mandel’s test. Variation of pore pressure normalised with 𝑝∗ = 60 [Pa], poroelastic stress (axial component normalised with 𝜎∗ = −100 [Pa] and radial
component with 𝜎∗ = 8 [Pa]) and displacement (vertical component normalised with 𝑢∗ = −0.04 [m] and horizontal component with 𝑢∗ = 0.04 [m]) against time
for the constant and nonlinear permeability cases, and recorded at the points (0,𝐻∕2) (left) and (𝐿∕2,𝐻) (middle). The right panel shows the patterns of pore
pressure at the final time on the deformed configuration.

completeness we also depict the deformed configuration at the final time together with the pore pressure distribution (produced
with the constant permeability case).
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