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LOCKING-FREE FINITE ELEMENT METHODS FOR
POROELASTICITY∗

RICARDO OYARZÚA† AND RICARDO RUIZ-BAIER‡

Abstract. We propose a new formulation along with a family of finite element schemes for the
approximation of the interaction between fluid motion and linear mechanical response of a porous
medium, known as Biot’s consolidation problem. The steady-state version of the system is recast in
terms of displacement, pressure, and volumetric stress, and both continuous and discrete formulations
are analyzed as compact perturbations of invertible problems employing a Fredholm argument. In
particular, the error estimates are derived independently of the Lamé constants. Numerical results
indicate the satisfactory performance and competitive accuracy of the introduced methods.
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1. Introduction. Linear poroelasticity equations consist of a momentum con-
servation for a porous skeleton, coupled with mass conservation of a diffusive flow
within the medium. In its basic form introduced in [7], the system allows one to
describe physical loading of porous layers and the change of hydraulic equilibrium
in a fluid-structure system. It also serves as the classical model for the subsurface
consolidation processes and it has applications in many scenarios of high practical im-
portance, such as petroleum production, geological CO2 sequestration, waste disposal,
pile foundations, perfusion of bones and soft living tissues, etc. The success in accu-
rately replicating poroelasticity solutions using numerical methods is often affected by
the presence of two main unphysical scenarios: spurious pressure modes and volumet-
ric locking. Here we propose a three-field formulation of the model problem, where
classical finite element methods can be employed straightforwardly without the risk of
producing the aforementioned phenomena. We remark that the additional third un-
known introduced in the model (and containing information about stresses) is a scalar
field, thus making the proposed formulation very appealing from the computational
viewpoint.

Related work and specifics of this contribution. The stability of a semidiscrete
finite element (FE) method applied to linear poroelasticity was studied in the early
work [26]. Mixed-primal FE formulations to approximate the solid displacement,
the fluid flux, and the pore pressure were introduced in [27, 28, 36]. Primal and
primal-mixed discontinuous Galerkin (DG) approximations of linear poroelasticity
were proposed and analyzed in [10, 24], least-squares mixed FE methods were also
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applied for Biot’s consolidation system in [22], pressure-stabilized methods have been
employed in [37, 6], and [38] presents a mixed-mixed formulation for the same problem,
where the unknowns are the Cauchy stress, the displacement, the pressure and the
fluid flux, and a mixed-mixed FE method follows the same continuous setting.

Our goal is to present a stable and convergent conforming FE method for the
discretization of the model problem, where the volumetric contributions to the total
stress are merged into an additional unknown, yielding a saddle point formulation
that can be analyzed by means of a Fredholm alternative, after regarding the prob-
lem as a compact perturbation of a Stokes-like invertible system. More precisely, in
the coupled variational formulation there is a zero order term with a “wrong sign”
which causes the loss of invertibility of the associated operator. However, the com-
pactness of the embedding H1(Ω) ↪→ L2(Ω) allows one to make use of a Fredholm
alternative to analyze its solvability (see similar approaches in [11, 17, 18]). In ad-
dition, a generic Galerkin scheme is constructed, whose solvability properties follow
closely those from the continuous variational form, and more importantly, given that
specific FE spaces are chosen adequately, it is stable even in the incompressible limit
(λ → ∞). We emphasize that the latter means that all constants in the estimates
below are independent of the Lamé parameter λ.

Outline. The layout of this paper is as follows. In the remainder of this section
we recall some needed notation and general definitions. Section 2 summarizes the
model equations of linear poroelasticity, including its strong and weak forms, and
boundary conditions considered in the subsequent analysis. The Galerkin scheme is
introduced in section 3, where the corresponding stability analysis and convergence
also are derived. In particular, in section 3.3 we make precise the definition of the
involved discrete spaces, recall some approximation properties, and state the theoret-
ical error bounds. Finally, section 4 collects several numerical results and benchmark
test cases illustrating the accuracy of the proposed methods.

Preliminaries. Standard notation will be adopted for Lebesgue and Sobolev
spaces. Moreover, M and M will denote the corresponding vectorial and tensorial
counterparts of the generic scalar functional space M and ‖ · ‖, with no subscripts,
will stand for the natural norm of either an element or an operator in any product
functional space. For instance, if Θ ⊆ Rd, d = 2, 3, is a domain, Λ ⊆ Rd is a Lip-
schitz surface, and r > 0, we define Hr(Θ) := [Hr(Θ)]d and Hr(Λ) := [Hr(Λ)]d.
By 0 we will refer to the generic null vector (including the null functional and op-
erator), and we will denote by C and c, with or without subscripts, bars, tildes, or
hats, generic constants independent of the discretization parameters, which may take
different values at different occurrences.

2. Governing equations and well-posedness analysis.

2.1. Proposed three-field formulation and boundary conditions. Let us
consider a homogeneous porous matrix containing a mixture of incompressible grains
and interstitial fluid. We assume that this material body occupies a bounded and
simply connected domain Ω ⊂ Rd, d = 2, 3. For all t > 0, given a body force
f(t) : Ω→ Rd and a volumetric fluid source (or sink) s(t) : Ω→ R, the classical Biot
consolidation problem (cf. [7]) consists of finding the displacements of the porous
skeleton, u(t) : Ω→ Rd and the pore pressure of the fluid, p(t) : Ω→ R, such that

∂t
(
c0p+ α(divu)

)
− 1

η
div[κ(∇p− ρg)] = s in Ω,(2.1)

σ = λ(divu)I + 2µε(u)− pI in Ω,(2.2)
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−divσ = f in Ω,(2.3)

where σ is the total Cauchy solid stress, ε(u) = 1
2 (∇u + ∇uT ) is the infinitesimal

strain tensor (symmetrized gradient of displacements), κ is the permeability of the
porous solid (here assumed isotropic and satisfying 0 < κ1 ≤ κ(x) ≤ κ2 < ∞ for all
x ∈ Ω), λ, µ are the Lamé constants of the solid, c0 > 0 is the constrained specific
storage coefficient, α > 0 is the so-called Biot–Willis parameter, g is the gravity
acceleration (constant and aligned with the vertical direction), η > 0, ρ > 0 are the
viscosity and density of the pore fluid, and the term c0p + α(divu) represents the
total fluid content in the domain (fluid pressure plus the material volume).

Notice that (2.2) states the constitutive law of the solid (differing from the classical
linear elastic model in that here p is the fluid pressure), (2.3) represents momentum
conservation of the porous medium (under the assumption that the solid deformations
are much slower than the fluid flow rate), whereas mass conservation of the fluid
obeying a Darcy regime is accounted for by (2.1). Using Hölder continuity assumptions
for rather standard boundary and initial data, the solvability of (2.1)–(2.3) has been
established in [30].

In order to illustrate the main ideas of the new formulation and its discretization,
we will restrict the discussion to a static problem consisting of (2.2) and (2.3) coupled
with the relation

(2.4) c0p+ α(divu)− 1

η
div[κ(∇p− ρg)] = s in Ω,

arising from, e.g., Euler time discretization of (2.1) (and making abuse of notation in
s). Time dependence of field variables and data can be, therefore, dropped. Let us
further consider the auxiliary unknown representing the volumetric part of the total
stress (also may be regarded as a pseudo total pressure) defined as

(2.5) φ := p− λ divu.

Therefore, (2.2) and (2.4) read, respectively,

(2.6) σ = 2µε(u)− φI,

(
c0 +

α

λ

)
p− α

λ
φ− 1

η
div[κ(∇p− ρg)] = s in Ω.

We assume that the domain boundary is disjointly split into a part where fluid
pressure is specified and a part where displacements are imposed ∂Ω = Γp ∪Γu, Γp ∩
Γu = ∅. System (2.5)–(2.6) is then complemented with suitable boundary conditions

(2.7) p = pΓ, σn = h on Γp, and u = uΓ, (κ∇p) · n = j on Γu,

where n is the exterior unit normal vector on ∂Ω, h is a known load vector, and j is
an imposed pressure flux.

2.2. Weak formulation. Homogeneous boundary data will be assumed for the
sake of conciseness of the presentation, but we stress that (2.7) can be incorporated
later on, using classical lifting arguments. Let us multiply (2.3), (2.5), and (2.6)
by adequate test functions and proceed to integrate by parts in such a way that
second order derivatives are removed, and the following weak formulation holds: Find
u ∈ H, p ∈ Q, φ ∈ Z such that

a1(u,v) + b1(v, φ) = F (v) ∀v ∈ H,(2.8)
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a2(p, q)− b2(q, φ) = G(q) ∀q ∈ Q,(2.9)

b1(u, ψ) + b2(p, ψ)− c(φ, ψ) = 0 ∀ψ ∈ Z,(2.10)

where the boundary treatment suggests defining the involved functional spaces as

H := H1
Γu

(Ω) = {v ∈ H1(Ω) : v|Γu = 0}, Z := L2(Ω),

Q := H1
Γp

(Ω) = {q ∈ H1(Ω) : q|Γp = 0},

and the bilinear forms a1 : H × H → R, a2 : Q × Q → R, b1 : H × Z → R,
b2 : Q × Z → R, c : Z × Z → R, and linear functionals F : H → R, G : Q → R are
specified in the following way:

a1(u,v) := 2µ

∫
Ω

ε(u) : ε(v), a2(p, q) :=

(
c0
α

+
1

λ

)∫
Ω

pq +
1

αη

∫
Ω

κ∇p · ∇q,

(2.11)

b1(v, ψ) := −
∫

Ω

ψ div v, b2(q, ψ) :=
1

λ

∫
Ω

qψ, c(φ, ψ) :=
1

λ

∫
Ω

φψ,

(2.12)

F (v) :=

∫
Ω

f · v, G(q) :=
ρ

αη

∫
Ω

κg · ∇q − ρ

αη
〈κg · n, q〉Γu

+
1

α

∫
Ω

sq,

(2.13)

where 〈·, ·〉Γu
stands for the duality pairing between H

−1/2
00 (Γu) and H

1/2
00 (Γu) and

H
1/2
00 (Γu) := {q|Γu : q ∈ H1(Ω), q = 0 on Γp}.

In addition, we also define an auxiliary uncoupled displacement-volumetric stress
problem as follows: find (u, φ) ∈ H× Z such that

(2.14) M±((u, φ), (v, ψ)) = H(v, ψ) ∀(v, ψ) ∈ H× Z,

where

M±((u, φ), (v, ψ)) := a1(u,v) + b1(v, φ)± b1(u, ψ) and H(v, ψ) = F (v)

for all (u, φ), (v, ψ) ∈ H× Z.

2.3. Stability. Let us now discuss the stability properties of the bilinear forms
and functionals appearing in (2.8)–(2.10). We start by observing that all the bilinear
forms are bounded:

(2.15)

|a1(u,v)| ≤ 2µCk,2‖u‖1,Ω‖v‖1,Ω, u,v ∈ H,

|a2(p, q)| ≤ max

{
c0
α

+
1

λ
,
κ2

αη

}
‖p‖1,Ω‖q‖1,Ω, p, q ∈ Q,

|b1(v, ψ)| ≤
√
d‖v‖1,Ω‖ψ‖0,Ω, v ∈ H, ψ ∈ Z,

|b2(q, ψ)| ≤ λ−1‖q‖1,Ω‖ψ‖0,Ω, q ∈ Q, ψ ∈ Z,

|c(φ, ψ)| ≤ λ−1‖φ‖0,Ω‖ψ‖0,Ω, φ, ψ ∈ Z.

Above, Ck,2 is one of the positive constants satisfying

(2.16) Ck,1‖v‖21,Ω ≤ ‖ε(v)‖20,Ω ≤ Ck,2‖v‖21,Ω ∀v ∈ H.
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In turn, the functionals F and G are also bounded:
(2.17)
|F (v)| ≤ ‖f‖0,Ω‖v‖1,Ω, v ∈ H,

|G(q)| ≤ α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖q‖1,Ω, q ∈ Q,

where CΓ > 0 is the continuity constant of the trace operator.
We now review the positivity of the forms a1, a2, and c. By using the inequality

(2.16), the uniform lower bound of κ, and according to the definition of the forms a1,
a2, and c, it readily follows that

(2.18)

a1(v,v) ≥ 2µCk,1‖v‖21,Ω ∀v ∈ H,

a2(q, q) ≥ α−1min{c0, κ1η
−1}‖q‖21,Ω + λ−1‖q‖20,Ω ∀ q ∈ Q,

c(ψ,ψ) = λ−1‖ψ‖20,Ω ∀ψ ∈ Z.

Alternatively, owing to the Poincaré inequality |q|21,Ω ≥ ĉ‖q‖20,Ω for all q ∈ Q, the
ellipticity of a2 can be obtained through

(2.19) a2(q, q) ≥ κ1Cp
αη
‖q‖21,Ω + λ−1‖q‖20,Ω ∀ q ∈ Q,

with Cp = ĉ
1+ĉ > 0.

Finally, the bilinear form b1 satisfies the continuous inf-sup condition (see, e.g.,
[20]):

(2.20) sup
v∈H\0

b1(v, ψ)

‖v‖1,Ω
≥ β‖ψ‖0,Ω ∀ψ ∈ Z,

with β > 0 only depending on Ω.

2.4. Solvabilty and continuous dependence result. Now, we establish the
well-posedness of problem (2.8)–(2.10). We start with the corresponding continuous
dependence result.

Lemma 2.1. Let (u, p, φ) ∈ H × Q × Z be a solution of the system (2.8)–(2.10).
Then there exists Cstab > 0 independent of λ, such that

‖u‖1,Ω + ‖p‖1,Ω + ‖φ‖0,Ω ≤ Cstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.

Proof. First, choosing v = u in (2.8) and ψ = φ in (2.10), and combining both
equations, we easily obtain

a1(u,u)− b2(p, φ) + c(φ, φ) = F (u),

which together with the positivity of a1 and c in (2.18), and the continuity of b2 and
F in (2.15) and (2.17), respectively, implies

(2.21) 2µCk,1‖u‖21,Ω − λ−1‖p‖1,Ω‖φ‖0,Ω + λ−1‖φ‖20,Ω ≤ ‖f‖0,Ω‖u‖1,Ω.

In turn, choosing q = p in (2.9), we have

a2(p, p)− b2(p, φ) = G(p),
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which in combination with the positivity of a2 in (2.19) and the continuity of b2 and
G in (2.15) and (2.17), respectively, implies

(2.22)

κ1Cp
αη
‖p‖21,Ω + λ−1‖p‖20,Ω − λ−1‖p‖1,Ω‖φ‖0,Ω

≤ α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖p‖1,Ω.

Then, adding (2.21) and (2.22), and utilizing the inequality −2ab ≥ −a2 − b2, we get
(2.23)

2µCk,1‖u‖21,Ω +
κ1Cp
αη
‖p‖21,Ω

≤ ‖f‖0,Ω‖u‖1,Ω + α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖p‖1,Ω,

which readily gives

(2.24) ‖u‖1,Ω + ‖p‖1,Ω ≤ c
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
,

with c > 0 independent of λ.
Now, from the inf-sup condition (2.20) with ψ = φ and using (2.8), we obtain

(2.25)

β‖φ‖0,Ω ≤ sup
v∈H\0

b1(v, φ)

‖v‖1,Ω
= sup

v∈H\0

F (v)− a1(u,v)

‖v‖1,Ω
≤ ‖f‖0,Ω + 2µCk,2‖u‖1,Ω,

which combined with (2.24), implies

‖φ‖0,Ω ≤ c̃
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.

The latter bound and inequality (2.24) imply the desired estimate, which con-
cludes the proof.

Next, we address the unique solvability of (2.8)–(2.10). To that end, we first
observe that due to the nonsymmetry of (2.8)–(2.10), its solvability analysis cannot
be straightforwardly placed in the framework of the classical Babuška–Brezzi theory.
We, therefore, redefine system (2.8)–(2.10) as the following operator problem: Find
~u := (u, p, φ) ∈ V := H×Q× Z, such that

(2.26) (A+K)~u = F ,

where A : V→ V, K : V→ V, and F ∈ V are defined as

(2.27)

〈A(~u), ~v〉V×V := a1(u,v) + b1(v, φ)− b1(u, ψ) + c(φ, ψ) + a2(p, q),

〈K(~u), ~v〉V×V := b2(p, ψ)− b2(q, φ),

〈F , ~v〉V×V := F (v) +G(q)

for all ~u = (u, p, φ), ~v = (v, q, ψ) ∈ V.
In this way, similarly to [12, 17], if one proves that A is invertible, K is com-

pact and (A + K) is injective, then the Fredholm alternative theory implies unique
solvability of (2.26), and equivalently of (2.8)–(2.10).

We begin by proving the compactness of K.

Lemma 2.2. The operator K defined in (2.27) is compact.
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Proof. Let B2 : Q → Z be the operator induced by the bilinear form b2, that is,
the operator defined by

〈B2(q), ψ〉0,Ω = b2(q, ψ) =
1

λ

∫
Ω

qψ ∀ q ∈ Q, ∀ψ ∈ Z,

where 〈·, ·〉0,Ω denotes the inner product in L2(Ω). Moreover, let I : L2(Ω) → L2(Ω)

be the identity operator and let ic be the compact embedding from H1(Ω) into L2(Ω).
Then, it is straightforward to realize that B2 = λ−1I ◦ ic, which implies that B2 is a
compact operator, and so is B∗2.

Owing to the above, and noting that K(~u) = (0,B2(p),−B∗2(φ)) for all ~u =
(u, p, φ), we conclude the proof.

We continue with the invertibility of A.

Lemma 2.3. The operator A defined in (2.27) is invertible.

Proof. Given F := (FH,FQ,FZ) ∈ V, we first observe that proving the invertibil-
ity of A is equivalent to proving the existence of a unique ~u ∈ V, such that

(2.28) A(~u) = F ,

which in turn is equivalent to proving the unique solvability of the two uncoupled
problems: Find (u, φ) ∈ H× Z, such that

(2.29)
a1(u,v) + b1(v, φ) = FH(v) ∀v ∈ H,

b1(u, ψ)− c(φ, ψ) = FZ(ψ) ∀ψ ∈ Z,

and: Find p ∈ Q, such that

(2.30) a2(p, q) = FQ(q) ∀ q ∈ Q,

where FH, FQ, and FZ are the functionals induced by FH, FQ, and FZ, respectively.
According to the stability properties of the forms a1, b1, and c discussed above,

namely, continuity of a1, b1, and c, inf-sup of b1, ellipticity of a1, and positive-
semidefinitivity of c, the well-posedness of (2.29) follows from a straightforward ap-
plication of [19, Lemma 3.4]. In turn, owing to the ellipticity and continuity of a2,
the unique solvability of (2.30) holds by virtue of the Lax–Milgram lemma.

The last step consists of proving injectivity of the full operator (A+K).

Lemma 2.4. The map (A+K) is one-to-one.

Proof. It suffices to show that the unique solution to the homogeneous problem

a1(u,v) + b1(v, φ) = 0 ∀v ∈ H,(2.31)

a2(p, q)− b2(q, φ) = 0 ∀q ∈ Q,(2.32)

b1(u, ψ) + b2(p, ψ)− c(φ, ψ) = 0 ∀ψ ∈ Z,(2.33)

is the null vector in V. To that end, we apply basically the same steps in the proof
of Lemma 2.1. In fact, we let (u, p, φ) ∈ V be the solution of (2.31)–(2.33), choose
v = u, and ψ = φ in (2.31) and (2.33), respectively, and combine the two equations
to obtain

(2.34) a1(u,u)− b2(p, φ) + c(φ, φ) = 0.
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Then, by choosing q = p in (2.32) and adding the resulting equation to (2.34), we
obtain

a1(u,u) + a2(p, p)− 2b2(p, φ) + c(φ, φ) = 0,

which, along with the positivity of a1, a2, and c in (2.18)–(2.19), the continuity of b2
in (2.15), and the inequality −2ab ≥ −a2 − b2, implies

2µCk,1‖u‖21,Ω +
κ1Cp
αη
‖p‖21,Ω ≤ 0.

From the previous inequality we readily infer that u = 0 and p = 0. In turn, by
applying the inf-sup condition of b1 in (2.20) with ψ = φ, and using (2.31) and the
continuity of a1, we easily obtain

β‖φ‖0,Ω ≤ sup
v∈H\0

|b1(v, φ)|
‖v‖1,Ω

= sup
v∈H\0

|a1(u,v)|
‖v‖1,Ω

≤ 2µCk,2‖u‖1,Ω,

which implies that φ = 0 and concludes the proof.

The combination of Lemmas 2.1, 2.2, 2.3, and 2.4 with the Fredholm alternative
theory for compact operators implies the main result of this section, stated in the
following theorem.

Theorem 2.5. Given f ∈ L2(Ω), g ∈ L2(Ω), and s ∈ L2(Ω), there exists a
unique solution (u, p, φ) ∈ H×Q× Z to the coupled problem (2.8)–(2.10). Moreover,
there exists a positive constant Cstab, independent of λ, such that

‖u‖1,Ω + ‖p‖1,Ω + ‖φ‖0,Ω ≤ Cstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.

3. The Galerkin method. In this section we introduce the Galerkin scheme
of (2.8)–(2.10). By considering arbitrary finite dimensional subspaces we analyze its
solvability and provide the corresponding Céa’s estimate. We begin by introducing
the generic discrete spaces

Hh ⊆ H, Qh ⊆ Q, and Zh ⊆ Z,

where the subscript h stands for the size of a regular triangulation Th of Ω̄ made up
of triangles K (when d = 2) or tetrahedra K, (when d = 3) of diameter hK ; that is,
h := max {hK : K ∈ Th}.

In this way, the Galerkin scheme associated to (2.8)–(2.10) reads as follows: Find
uh ∈ Hh, ph ∈ Qh, and φh ∈ Zh, such that

a1(uh,vh) + b1(vh, φh) = F (vh) ∀vh ∈ Hh,(3.1)

a2(ph, qh)− b2(qh, φh) = G(qh) ∀qh ∈ Qh,(3.2)

b1(uh, ψh) + b2(ph, ψh)− c(φh, ψh) = 0 ∀ψh ∈ Zh,(3.3)

where the bilinear forms a1, a2, b1, b2, c and the functionals F and G are defined in
(2.11)–(2.13).

3.1. Existence and uniqueness of solution. It is clear that all the bilinear
forms and functionals preserve the stability properties (2.15) and (2.17) on the cor-
responding discrete spaces. In addition, the bilinear forms a1, a2, and c preserve the
positivity properties (2.18)–(2.19) on Hh, Qh, and Zh, respectively. However, the
inf-sup condition (2.20) is not necessarily inherited at the discrete level, reason why,
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from now on we assume that there exists a positive constant β̂, independent of h,
such that

(3.4) sup
vh∈Hh\0

b1(vh, ψh)

‖vh‖1,Ω
≥ β̂‖ψ‖0,Ω ∀ψh ∈ Zh.

As we will see next in section 3.3, the pair (Hh,Zh) can be chosen as a pair of stable
finite element subspaces for the Stokes problem.

The following theorem establishes the well-posedness of the Galerkin scheme
(3.1)–(3.3).

Theorem 3.1. Assume that the discrete inf-sup condition (3.4) holds. Then,
given f ∈ L2(Ω), g ∈ L2(Ω), and s ∈ L2(Ω), there exists a unique solution (uh, ph, φh)
∈ Hh ×Qh × Zh to the discrete coupled problem (3.1)–(3.3). Moreover, there exists a
positive constant Ĉstab, independent of h and λ, such that
(3.5)
‖uh‖1,Ω + ‖ph‖1,Ω + ‖φh‖0,Ω ≤ Ĉstab

(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.

Proof. Since Hh, Qh, and Zh are finite dimensional spaces, for the solvability
analysis it suffices to prove that the solution of the homogeneous problem is the trivial
one. To do that, we let uh ∈ Hh, ph ∈ Qh, and φh ∈ Zh be the solution of (3.1)–(3.3)
with f = 0, g = 0, and s = 0. Then, proceeding identically as in the proof of Lemma
2.4, that is, combining (3.1) and (3.3) with vh = uh and ψh = φh, respectively, adding
(3.3) with qh = ph to the resulting equation, and using the positivity of a1, a2, and c
in (2.18)–(2.19), the continuity of b2 in (2.15), and the inequality −2ab ≥ −a2 − b2,
we obtain

2µCk,1‖uh‖21,Ω +
κ1Cp
αη
‖ph‖21,Ω ≤ 0

from which uh = 0 and ph = 0. Furthermore, from the inf-sup condition (3.4) with
ψh = φh, and the first equation of (3.1), we easily obtain φh = 0.

Similarly, the continuous dependence result (3.5) can be derived following exactly
the same steps of the proof of Lemma 2.1. We omit further details.

3.2. A priori error estimate. We now derive the corresponding Céa’s esti-
mate. This result is established next.

Theorem 3.2. Assume that the discrete inf-sup condition (3.4) holds. Let (u, p, φ)
∈ H×Q×Z and (uh, ph, φh) ∈ Hh×Qh×Zh be the unique solutions of the continuous
and discrete coupled problems (2.8)–(2.10) and (3.1)–(3.3), respectively. Then, there
exists CCéa > 0, independent of h and λ, such that
(3.6)
‖u−uh‖1,Ω+‖p−ph‖1,Ω+‖φ−φh‖0,Ω ≤ CCéa

(
dist(u,Hh)+dist(p,Qh)+dist(φ,Zh)

)
.

Proof. Let us first introduce the discrete space

Kh :=
{
vh ∈ Hh : b1(vh, ψh) = −b2(ph, ψh) + c(φh, ψh) ∀ψh ∈ Zh

}
,

which is clearly nonempty since uh ∈ Kh and since the discrete inf-sup condition
(3.4) holds. In addition, it is not difficult to see that the following inequality holds
(see, for instance, [16, Theorem 2.6]):

(3.7) dist(u,Kh) ≤ C dist(u,Hh).
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Next, in order to simplify the subsequent analysis, we write eu = u − uh, ep =

p− ph, and eφ = φ− φh. As usual, for arbitrary v̂h ∈ Kh, q̂h ∈ Qh, and ψ̂h ∈ Zh, we
shall decompose these errors into

(3.8) eu = ru + χu, ep = rp + χp, and eφ = rφ + χφ,

with

(3.9)

ru := u− v̂h ∈ H, χu := v̂h − uh ∈ Hh,

rp := p− q̂h ∈ Q, χp := q̂h − ph ∈ Qh,

rφ := φ− ψ̂h ∈ Z, χφ := ψ̂h − φh ∈ Zh.

Notice that, since uh and v̂h belong to Kh, then

b1(uh, ψh)=−b2(ph, ψh)+c(φh, ψh) and b1(v̂h, ψh)=−b2(ph, ψh)+c(φh, ψh) ∀ψh ∈ Zh.

It follows that

b1(χu, ψh) = b1(v̂h − uh, ψh) = 0 ∀ψh ∈ Zh,

which implies that χu ∈ Kerh(b1) :=
{
vh ∈ Hh : b1(vh, ψh) = 0 ∀ψh ∈ Zh

}
.

Observe also that if we prove the existence of a positive constant C, independent of
h and λ, such that

(3.10) ‖χu‖1,Ω + ‖χp‖1,Ω + ‖χφ‖0,Ω ≤ C(‖ru‖1,Ω + ‖rp‖1,Ω + ‖rφ‖0,Ω),

then one could simply use the triangle inequality and the fact that v̂h, q̂h, and ψ̂h are
arbitrary, to obtain

‖eu‖1,Ω + ‖ep‖1,Ω + ‖eφ‖0,Ω ≤ (1 + C)
(

dist(u,Kh) + dist(p,Qh) + dist(φ,Zh)
)
,

which, together with (3.7), implies (3.6). Therefore, in what follows we focus on prov-
ing (3.10). To that end, we first establish the corresponding Galerkin orthogonality
property:

a1(eu,vh) + b1(vh, eφ) = 0 ∀vh ∈ Hh,(3.11)

a2(ep, qh)− b2(qh, eφ) = 0 ∀qh ∈ Qh,(3.12)

b1(eu, ψh) + b2(ep, ψh)− c(eφ, ψh) = 0 ∀ψh ∈ Zh.(3.13)

Then, from (3.11) with vh = χu ∈ Kerh(b1), and considering the decomposition (3.8),
we have

a1(χu,χu) = −a1(ru,χu)− b1(χu, rφ),

which together with the ellipticity of a1 (cf. (2.18)) and the continuity of a1 and b1
(cf. (2.15)), implies

(3.14) ‖χu‖1,Ω ≤ C1{‖ru‖1,Ω + ‖rφ‖0,Ω},

with C1 > 0, independent of h and λ. Notice that the latter inequality implies

(3.15) ‖eu‖1,Ω ≤ (1 + C1)‖ru‖1,Ω + C1‖rφ‖0,Ω}.
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In turn, from the inf-sup condition (3.4), the first equation of (3.11), and the
continuity of a1 and b1 (cf. (2.15)), we have

‖χφ‖0,Ω ≤ β−1 sup
vh∈Hh\0

|b1(vh, χφ)|
‖vh‖1,Ω

= β−1 sup
vh∈Hh\0

|a1(eu,vh) + b1(vh, rφ)|
‖vh‖1,Ω

≤ β−1 (2µCk,2‖eu‖1,Ω +
√
n‖rφ‖0,Ω) ,

which, together with (3.15), implies

(3.16) ‖χφ‖0,Ω ≤ C2(‖ru‖1,Ω + ‖rφ‖0,Ω),

with C2 > 0, independent of h and λ. In addition, similarly as before, we observe
that (3.16) and the triangle inequality imply

(3.17) ‖eφ‖0,Ω ≤ C2‖ru‖1,Ω + (1 + C2)‖rφ‖0,Ω.

Finally, from (3.12), the ellipticity of a2 (cf. (2.19)), and the continuity of a2 and
b2, we obtain

κ1Cp
αη
‖χp‖21,Ω ≤ a2(χp, χp) = −a2(rp, χp) + b2(χp, eφ)

≤ 1

α
max

{
c0 +

α

λ
,
κ2

η

}
‖rp‖1,Ω‖χp‖1,Ω + λ−1‖eφ‖0,Ω‖χp‖1,Ω,

which, together with (3.17), implies

(3.18) ‖χp‖1,Ω ≤ C3

(
max

{
c0 +

α

λ
,
κ2

η

}
‖rp‖1,Ω + λ−1‖ru‖1,Ω + λ−1‖rφ‖0,Ω

)
.

Therefore, summing up inequalities (3.14), (3.16), and (3.18), we get

‖χu‖1,Ω + ‖χp‖1,Ω+‖χφ‖0,Ω ≤ (C1 + C2 + λ−1C3)‖ru‖1,Ω

+C3 max

{
c0 +

α

λ
,
κ2

η

}
‖rp‖1,Ω + (C1 + C2 + λ−1C3)‖rφ‖0,Ω,

which yields the result.

Remark 3.1. The coefficients max{c0 + α
λ ,

κ2

η } and (C1 + C2 + λ−1C3) in the
previous inequality must be understood as constants independent of λ since, if λ goes
to infinity (when the locking phenomenon occurs), λ−1C3 and λ−1α are negligible.

3.3. Particular choice of finite elements. Now, we provide three concrete
examples of finite elements subspaces to approximate the solution of (2.8)–(2.10). To
do that, given an integer k ≥ 0 and a set S of Rd, in what follows we denote by Pk(S)
the space of polynomial functions on S of degree ≤ k.

Hood–Taylor + Lagrange. Let k ≥ 0 be an integer. Then, the well-known
Hood–Taylor element (see, e.g., [20]) consists of the pair (Hh,Zh), where

Hh :=
{
vh ∈ [C(Ω)]d : vh

∣∣
K
∈ [Pk+2(K)]d ∀K ∈ Th, vh = 0 on Γu

}
and

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ Pk+1(K) ∀K ∈ Th

}
.
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In turn, given an integer l ≥ 0 to approximate the variable p we can simply choose
the discrete space

(3.19) Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ Pl+1(K) ∀K ∈ Th, qh = 0 on Γp

}
.

It is well known that the pair (Hh,Zh) satisfies the inf-sup condition (3.4) (see, for
instance, [8, 9, 20]). This fact and Theorem 3.1 imply the well-posedness of problem
(3.1)–(3.3).

Let us now recall the approximation properties of the subspaces specified above.
(APu

h ) There exists C > 0, independent of h, such that for all u ∈ Hk+3(Ω), there
holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Chk+2‖u‖k+3,Ω.

(APp
h) There exists C > 0, independent of h, such that for all p ∈ Hl+2(Ω), there

holds
inf

qh∈Qh

‖p− qh‖1,Ω ≤ Chl+1‖p‖l+2,Ω.

(APφ
h) There exists C > 0, independent of h, such that for all φ ∈ Hk+2(Ω), there

holds
inf

ψh∈Zh

‖φ− ψh‖0,Ω ≤ Chk+2‖φ‖k+2,Ω.

Owing to these approximation properties, we now can establish the theoretical
rate of convergence of our method.

Theorem 3.3. Let (u, p, φ) ∈ H×Q×Z and (uh, ph, φh) ∈ Hh×Qh×Zh be the
unique solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Given, k, l ≥ 0, assume
that u ∈ Hk+3(Ω), p ∈ Hl+1(Ω), and φ ∈ Hk+2(Ω). Then, there exist C1, C2, > 0,
independent of h and λ, such that
(3.20)
‖u−uh‖1,Ω+‖p−ph‖1,Ω+‖φ−φh‖0,Ω ≤ C1h

k+2
{
‖u‖k+3,Ω+‖φ‖k+2,Ω

}
+C2h

l+1‖p‖l+2,Ω.

Proof. The proof follows from the Céa estimate (3.6), and the approximation

properties (APu
h ), (APp

h), and (APφ
h).

Note that choosing l = k + 1 yields an overall convergence rate of O(hk+2).

Remark 3.2. The assumption of additional regularity (needed for Hood–Taylor
elements) is the standard theoretical requirement to derive the desired orders of con-
vergence (see [8, 9, 20] or [13, sect. 4.2.5]). In practice, since the model problem
can be regarded as a combination between the elasticity and Darcy problems, one
may assume more regularity on the data and apply classical arguments for elliptic
problems (cf. [21]) to ensure the desired regularity for the solution. This analysis is
however beyond the scope of this paper.

MINI–element + Lagrange. In what follows, for the sake of conciseness of the
presentation we restrict ourselves to the two-dimensional (2D) case. For each K ∈ Th,
we let P1,b(K) be the space (see, e.g., [20])

P1,b(K) := [P1(K)⊕ span{bK}]2,

where bK := ϕ1ϕ2ϕ3 is a P3 bubble function in K, and ϕ1, ϕ2 , ϕ3 are the barycentric
coordinates of K. Then, the MINI-element (see, e.g., [20]) is the pair (Hh,Zh), where

Hh :=
{
vh ∈ [C(Ω)]2 : vh

∣∣
K
∈ P1,b(K) ∀K ∈ Th, vh = 0 on Γu

}
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and

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ P1(K) ∀K ∈ Th

}
.

In addition, to approximate the variable p we now choose the discrete space

Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ P1(K) ∀K ∈ Th, qh = 0 on Γp

}
.

As for the Hood–Taylor element defined above, it is well known that the pair
(Hh,Zh) satisfies the inf-sup condition (3.4) (see, for instance, [13, 20]). Then, owing
to Theorem 3.1, the discrete problem (3.1)–(3.3) defined with the subspaces above is
clearly well posed.

Let us now recall the approximation properties of these subspaces.

(ÂP
u

h ) There exists C > 0, independent of h, such that for all u ∈ H2(Ω), there
holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Ch‖u‖2,Ω.

(ÂP
p

h) There exists C > 0, independent of h, such that for all p ∈ H2(Ω), there holds

inf
qh∈Qh

‖p− qh‖1,Ω ≤ Ch‖p‖2,Ω.

(ÂP
φ

h) There exists C > 0, independent of h, such that for all φ ∈ H1(Ω), there holds

inf
ψh∈Zh

‖φ− ψh‖0,Ω ≤ Ch‖φ‖1,Ω.

Owing to these approximation properties, we now can establish the theoretical
rate of convergence of our method.

Theorem 3.4. Let (u, p, φ) ∈ H × Q × Z and (uh, ph, φh) ∈ Hh × Qh × Zh
be the unique solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Assume that
u ∈ H2(Ω), p ∈ H2(Ω), and φ ∈ H1(Ω). Then, there exist C > 0, independent of h
and λ, such that

(3.21) ‖u− uh‖1,Ω + ‖p− ph‖1,Ω + ‖φ− φh‖0,Ω ≤ Ch
{
‖u‖2,Ω + ‖p‖2,Ω + ‖φ‖1,Ω

}
.

Proof. The proof follows from the Céa estimate (3.6), and the approximation

properties (ÂP
u

h ), (ÂP
p

h), and (ÂP
φ

h).

Stabilized Lagrange + Lagrange. It is often desirable to provide approxima-
tions where the pair (Hh,Zh) would not necessarily fulfill the discrete inf-sup condition
(3.4), but it would achieve a more general concept of stability (for weak coercivity, see
(3.22) below). The stabilization consists of adding terms to the discrete problem to
enforce such a condition (see [14]). The most appealing particular advantage is that
equal-order discretizations for u and φ are allowed. Therefore, for an integer k ≥ 1
we will consider the spaces

Hh :=
{
vh ∈ [C(Ω)]d : vh

∣∣
K
∈ [Pk(K)]d ∀K ∈ Th, vh = 0 on Γu

}
,

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ Pk(K) ∀K ∈ Th

}
.

Lemma 3.5 (see [2]). Assume H : W→ R is a continuous and linear functional,
Wh is a closed subspace of W, and the bilinear form M(·, ·) is either coercive or it
satisfies the discrete weak coercivity conditions:

sup
sh∈Wh\0

M(wh, sh)

‖sh‖W
≥ CW

1 ‖wh‖W ∀wh ∈Wh and(3.22)
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sup
wh∈Wh

M(wh, sh) > 0 ∀sh ∈Wh\0.

Then we have the following problem: find wh ∈Wh such that

M(wh, sh) = H(sh) ∀sh ∈Wh

has a unique solution satisfying ‖wh‖W ≤ CW
2 ‖H‖W′ . Moreover,

‖w −wh‖W ≤
(

1 +
CW

1

CW
2

)
inf

sh∈Wh

‖w − sh‖W .

In general, embedding the additional terms into expressions that vanish when the
solution is sufficiently regular (for instance, residual contributions), leads to strong
consistency of the stabilized scheme. A rich variety of stabilized methods targeted for
Stokes equations is available from the literature (including e.g., pressure-projection
stabilizations, variational multiscale methods, etc.) but here we focus only on one
family of methods known as Reflected Galerkin Least Squares (RGLS) schemes (see,
e.g., the review paper [5]). They consist of approximating the problem for displace-
ment and volumetric stress (2.14) by the augmented discrete problem

(3.23) M−RGLS

(
(uh, φh), (vh, ψh)

)
= H−RGLS(vh, ψh) ∀(vh, ψh) ∈ Hh × Zh,

where

M±RGLS

(
(uh, φh), (vh, ψh)

)
:=M±

(
(uh, φh), (vh, ψh)

)
+ τ

∑
K∈Th

h2
K

(
−2µdiv[ε(uh)] +∇φh,−2µdiv[ε(vh)]∓∇ψh

)
0,K

,

H±RGLS(vh, ψh) := H(vh, ψh) + τ
∑
K∈Th

h2
K

(
f ,−2µdiv[ε(vh)]∓∇ψh

)
0,K

for a given stabilization constant τ > 0. It can be proved that the nonsymmetric
form M−RGLS(·, ·) is strongly coercive for any positive τ . Therefore, problem (3.23) is
uniquely solvable and unconditionally stable in the sense of Lemma 3.5 using W =
H× Z (see also [5, sect. 3.1]). If we takeM+ in the definition of scheme (3.23), then
we end up with the classical Douglas–Wang scheme, and for k = 1, the problem (3.23)
boils down to

a1(uh,vh) + b1(φh,vh)− b1(ψh,uh) + τ
∑
K∈Th

h2
K(∇φh,∇ψh)0,K(3.24)

= F (vh) + τ
∑
K∈Th

h2
K(f ,∇ψh)0,K .

If one drops the last term in the right-hand side (RHS) of (3.24), then we recover the
reflected version of the classical Brezzi–Pitkäranta method.

Convergence rates for stabilized methods depend on the stabilization parameters
and on the order of the approximations k. For RGLS discretizations, the choice
of τ does not affect the expected convergence rates: O(hk+1) for displacements in
the L2-norm and O(hk) in the H1-norm, whereas a decay of O(hk) is expected for
the volumetric stress error in the L2-norm (see [14]). Looking now at the pressure
approximation, we choose Qh as in the previous two FE families. Therefore, the
following convergence result holds.
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Theorem 3.6. Let (u, p, φ) ∈ H × Q × Z and (uh, ph, φh) ∈ Hh × Qh × Zh
be the unique solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Assume that
u ∈ Hk+1(Ω), p ∈ Hk+1(Ω), and φ ∈ Hk(Ω). Then, there exists C > 0, independent
of h and λ, such that

‖u− uh‖1,Ω + ‖p− ph‖1,Ω + ‖φ− φh‖0,Ω ≤ Chk
{
‖u‖k+1,Ω + ‖p‖k+1,Ω + ‖φ‖k,Ω

}
.

Finally, we stress that regarding poroelasticity formulations, only a few stabilization
strategies have been applied to Biot consolidation problem, including a Galerkin least
squares method [33], a pressure-projection scheme [6], and pressure stabilization [1]
(see also [3, 4, 35] for similar schemes tailored for coupled flow-poroelasticity, finite
elasticity, and geomechanics-multiphase flow equations, respectively). We also point
out that the regularity of the pressure profiles is typically rather low (cf. [27, 28]),
which makes the use of stabilized low order methods more attractive than, e.g., Hood–
Taylor elements (see also Remark 3.2).

Remark 3.3. The continuous and discrete inf-sup conditions (resp., (2.20) and
(3.4)), are strictly necessary to obtain all the required estimates independent of the
parameter λ. In other words, without requiring these inf-sup conditions, it is still
possible to prove well-posedness of the continuous and discrete problems and the
corresponding Céa estimate. In fact, after simple computations, and without using
the inf-sup conditions, one can readily obtain that the operator A (cf. (2.27)) is
invertible and A + K is injective. However, by doing so one unfortunately obtains
the continuous dependence result and the Céa estimate with constants depending
on λ which leads to unstable methods when using, for example, a [P1]d × P1 × P0

approximation, and λ is large (see Example 1 in section 4 below).

4. Numerical tests. We now provide a set of numerical examples putting into
evidence some of the features analyzed above. Namely, optimal convergence in the
sense of Theorems 3.3, 3.4, and 3.6, and the locking-free property.

Example 1: Convergence rates for a manufactured solution in two di-
mensions. Let us consider a cantilever bracket with curved boundary, where we
propose the following smooth exact solutions to (2.3), (2.5), and (2.6):
(4.1)

u = a

(
sin(πx1) cos(πx2) +

x2
1

2λ

− cos(πx1) sin(πx2) +
x2
2

2λ

)
, p = b sin(πx1) sin(πx2), φ = p− λ divu,

and where the body force f and fluid source s can be simply determined from (4.1).
Notice that the forcing term remains bounded even for λ→∞, and robustness with
respect to ν would be expected.

We choose the following set of model parameters: displacement and pressure
scalings a =1e-4, b = π; Young modulus E = 1e4, material permeability κ = 1e-7,
Biot–Willis coefficient α = 0.1, constrained specific storage c0 = 1e-5, and the Lamé
constants are λ = Eν(1+ν)−1(1−2ν)−1, µ = E/(2+2ν). Here, and in all subsequent
tests, we consider zero gravitational forces. Note that divu = ax1+x2

λ , so the model
approaches the incompressibility limit as λ→∞.

The domain Ω is delimited by four curved boundaries parametrized as

Γ1 = {ω ∈ [0, 1] : x1 = ω + γ cos(πω) sin(πω), x2 = −γ cos(πω) sin(πω)},
Γ2 = {ω ∈ [0, 1] : x1 = 1 + γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)},
Γ3 = {ω ∈ [1, 0] : x1 = ω + γ cos(πω) sin(πω), x2 = 1− γ cos(πω) sin(πω)},
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Fig. 1. Example 1: Error history associated with the exact solutions (4.1) using four different
discretizations, where “Hood–Taylor” refers to the [P2]d ×P2 ×P1 method and “lowest order” refers
to the [P1]d×P1×P0 family. Panels on the left report errors incurred for ν = 0.4, whereas the right
plots correspond to ν = 0.49999. The vertical labels indicate relative errors.

Γ4 = {ω ∈ [1, 0] : x1 = γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)},

where we take γ = −0.08 (see, e.g., [29]). Boundary conditions are assigned as
follows: Nonhomogeneous Dirichlet displacements and pressure normal fluxes j are
set according to (4.1) on Γu = Γ3 ∪ Γ4; nonhomogeneous Dirichlet pressure and
Cauchy normal fluxes h are set according to (4.1) on Γp = Γ1 ∪ Γ2.

The accuracy of the numerical approximation using the FE families listed in
section 3.3 (Hood–Taylor with l = k+1, MINI-element, and stabilized scheme (3.24))
is assessed by partitioning Ω into unstructured triangulations generated putting 2n+1
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Fig. 2. Example 1: Three-field poroelasticity equations discretized with a stabilized method. This
figure contains contour plots of the approximate displacement components, displacement magnitude
and vectors, pressure profiles, and volumetric stress in the case where η = 0.49999 and λ = 1.66e8.

(n = 0, 1, . . . , 8) vertices on each curve of the domain boundary. Relative errors

e(u) :=
‖u− uh‖1,Ω
‖u‖1,Ω

, e(p) :=
‖p− ph‖1,Ω
‖p‖1,Ω

, e(φ) :=
‖φ− φh‖0,Ω
‖φ‖0,Ω

,

between exact and approximate solutions are to be computed on each refinement
level, and two sets of simulations were performed in order to study the influence
of the Poisson ratio. The first case corresponds to a mild incompressibility ν =
0.4 and λ = 14285.7, whereas the second case focuses on a quasi-incompressible
regime with ν = 0.49999 and λ = 1.66e8. Figure 1 reports on the error history.
In the first case, we observe optimal convergence rates for all methods, even for a
lowest order discretization using [P1]d×P1×P0 elements (see left panels in Figure 1).
We also observe that, for the inf-sup stable methods, not only are the convergence
rates invariant to increasing the Poisson ratio, but also the magnitude of the relative
errors remain unchanged. The lowest-order method, on the other hand, does not even
converge after three refinement steps, as evidenced in the dashed lines with a + mark
on the right panels of Figure 1. In Figure 2 we illustrate the converged numerical
solution obtained with the stabilized method (3.24), with stabilization constant τ =
1/60. These snapshots correspond to the case ν = 0.49999 and λ = 1.66e8.

Example 2: Footing problem and spurious pressure modes. We now
focus on the behavior of the proposed methods when applied to the solution of the 2D
footing test. The goal is to observe pressure, volumetric stress, and the displacements
incurred after a rectangular block of porous soil undergoes a load of intensity σ0 along
a strip on top of it. The model parameters are Ω = (−50, 50)× (0, 75), E =3e4 N/m2,
κ =1e-4 m2/Pa, σ0 =1.5e4 N/m2 (see a similar test in [15] for moderate Poisson
ratios). In addition, we put c0 =1e-3, α = 0.1, and here we force the incompressibility
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Fig. 3. Example 2: Footing of a porous block using the lowest order discretization. From top left
to bottom right: Approximation of displacement components and magnitude, pressure distribution,
and volumetric stress; and a sketch of the undeformed domain and boundary splitting.

limit by setting ν = 0.4995. Boundary conditions are set as follows (see a sketch in
the bottom right panel of Figure 3): u = 0 on Γ3 (left, right, and bottom sides of
the block); σn = h on Γ1 ∪ Γ2, where h = (0,−σ0)T on Γ1 and h = 0 otherwise;
and p = 0 on ∂Ω. The domain is partitioned into 71272 unstructured triangles using
35637 vertices.

The value of the Poisson ratio suggests that inf-sup unstable discretizations of
displacement and volumetric stress will produce spurious pressure modes. This phe-
nomenon is evidenced in Figure 3, where we depict the numerical solution obtained
with the lowest order discretization (i.e., the [P1]d × P1 × P0 family). Both the vol-
umetric stress and the pressure profiles are populated with oscillations, even with a
quite fine mesh. On the other hand, at least in this particular case, the computed
displacements do not appear to suffer from locking. Next we perform again the same
test, this time using the MINI-element for the discretization of displacement and
volumetric stress, whereas the pressure field is approximated with piecewise linear
continuous elements. In contrast with the results collected in Figure 3, now in Fig-
ure 4 the pressure and volumetric stress fields are stable and completely free from
spurious oscillations.

Example 3: Swelling of a sponge. Next, the implementation of the proposed
schemes in three dimensions is tested by looking at the displacements incurred by
swelling a porous block occupying the domain Ω = (0, 1)× (0, 1)× (0, 1

2 ). The driving
effect is simply a pressure difference between the sides x1 = 0 and x1 = 1, going
from p = 1e4 at x1 = 0 to zero pressure on x1 = 1. Zero-flux conditions are imposed
for pressure on the remainder of the boundary. The normal components of the dis-
placements are set to zero on the sides x1 = 0, x2 = 0, and x3 = 0, whereas zero
normal stress is considered elsewhere on ∂Ω. Other model and discretization param-
eters are listed in what follows: E = 8000, ν = 0.3, c0 = 0.001, κ = 1e-5, ρ = α = 1,
τ = 1/60. No external or internal forces are considered, neither fluid sources nor sinks.
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Fig. 4. Example 2: Footing of a porous block using the MINI-element method. From top left
to bottom right: Approximation of displacement components and magnitude, pressure distribution,
and volumetric stress.

The domain is partitioned into a structured tetrahedral mesh of 62586 elements and
10976 vertices, and a stabilized method using (3.24) is employed for the numerical
approximation of displacements, volumetric stress, and pressure. The obtained re-
sults are depicted in Figure 5, where no pressure oscillations nor unphysically small
displacements are observed. We also simulate the swelling of an heterogeneous porous
medium, where we consider that the permeability is zero in the strip 0.45 ≤ x1 ≤ 0.55
and otherwise we take κ = 1 (that is, five orders of magnitude larger than in the
previous test). Zones of zero permeability are commonly encountered in simulation
of heterogeneous porous skeletons and layered media [31]. Notice that in classical for-
mulations, the inverse of κ appears in the momentum equation, and thus the problem
may degenerate (see [34]). However, system (2.8)–(2.10) is still (at least formally)
solvable since a pressure mass term remains in the block associated to the bilinear
form a2(·, ·). The results are collected in the last row of Figure 5, where a much more
pronounced swelling is observed far from the slip-displacement boundaries, whereas
on the nonporous region, the material is swelling only due to the elastic compliance
behavior.

Example 4: One-dimensional consolidation benchmark. In our last test
we focus on the consolidation behavior of a thin porous column of height H and cross
area W . The top and bottom surfaces of the column are endowed with pervious
(zero pore pressure p = 0, constant mechanical load in the vertical direction σn =
−σ0e3, and free to drain) and impervious (zero pressure flux κ∇p · n = 0 and zero
displacement u = 0) filtration conditions, respectively. On the lateral walls we enforce
zero horizontal displacements (in both x1 and x2 directions). Therefore, Γp is the top
side of the column, whereas Γu = ∂Ω \ Γp. Moreover, we now consider the general
time-dependent system (2.1)–(2.3), and our goal is to compare the obtained numerical
approximations against the following exact solutions to the adimensional pseudo-one-
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Fig. 5. Example 3: Swelling of a sponge using a stabilized method. This figure contains dis-
placement components and magnitude, pressure distribution, and volumetric stress (top and middle
row). The last row shows approximate solutions when a strip of zero permeability is present in
the domain. All fields are represented on the deformed configuration, and the skeleton tetrahedral
undeformed mesh is also depicted.

dimensional (1D) version of this problem (see, e.g., [32, 25, 29]):

u∗ = 1− x∗ −
∞∑
k=0

2

M2
cos(Mx∗) exp(−M2t∗), p∗ =

∞∑
k=0

2

M
sin(Mx∗) exp(−M2t∗),

where the superscript ∗ denotes adimensional quantities and variables as follows: x∗ =
x3/H, t∗ = (λ+ 2µ)κtH2, M = 1

2π(2k + 1), u∗ = u3(λ+ 2µ)/σ0H, p∗ = p/σ0.
As it stands, our analysis clearly does not cover the original time-dependent sys-

tem, and our goal is only to illustrate the performance of the proposed schemes applied
to (2.1)–(2.3). A semidiscretization of this problem using a backward Euler method
with a fixed time-step ∆t yields

a1(un+1
h ,vh) + b1(vh, φ

n+1
h ) = Fn+1(vh) ∀vh ∈ Hh,

ã2(pn+1
h , qh)−b2(qh, φ

n+1
h )=∆tGn+1(qh)+

(
c0
α

+
1

λ

)∫
Ω

pnhqh − b2(qh, φ
n
h) ∀qh ∈ Qh,

b1(un+1
h , ψh) + b2(pn+1

h , ψh)− c(φn+1
h , ψh) = 0 ∀ψh ∈ Zh,

(4.2)

with ã2(p, q) :=
(
c0
α + 1

λ

) ∫
Ω
pq+ ∆t

αη

∫
Ω
κ∇p ·∇q, which implies that at each time-step
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Fig. 6. Example 4: Consolidation benchmark using the MINI-element + Lagrange approxi-
mation together with a backward Euler time stepping. The first two rows show snapshots of the
numerical solutions at t = 5 [s] (top) and t = 20 [s]. The bottom row displays mid-line profiles of
the computed versus exact nondimensional vertical displacement and pressure at five time instants
t∗ = 0.2, 0.4, . . . , 1.

we need to solve a system of the form (3.1)–(3.3). Notice that the coefficients in the
left-hand side of the system are constant and so only the RHS needs to be reassembled
at each time iteration. We choose the MINI-element + Lagrange approximation of
displacement, volumetric stress and pressure, and the thin column with H = 1[m],
W = 0.1[m2] is discretized into a structured tetrahedral mesh containing 3312 ele-
ments. Model and numerical parameters assume the values σ0 = 1e4 [Pa], E = 3e4
[N/m2], ν = 0.2, κ = 1e-10 [m2], η = 1e-3 [Pa s], c0 = 0, α = 1, ρ = 1, T = 10 [s],
∆t = 0.1 [s], and the initial data for displacement and pressure are set according to the
idealized 1D solutions with the Fourier series truncated at k = 350. Figure 6 presents
snapshots of the numerical solutions at early and advanced times, along with profiles
of the computed approximations and exact adimensional solutions at the centerline
(x3−axis) of the column, showing good accuracy throughout the time horizon.

We conclude this section stressing that the case of zero specific storage and zero
Biot–Willis coefficient c0 = α = 0 is not covered in our present analysis, since the
continuity and coercivity bounds for the pressure symmetric bilinear form a2(·, ·)
would blow up. Actually, the case α = 0 is of less importance since it implies that the
compression term, which in particular encodes the coupling of flow and deformations,
vanishes. On the other hand, if the problem is rewritten as the Biot consolidation
system after time discretization (as in (4.2)), then one realizes that the limit of ∆t→ 0
only removes the stiffness part of the pressure in the modified bilinear form ã2 (see
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also Example 3). Apart from having an ellipticity constant for a2 independent of c0
(which implies that all other important estimates such as Céa’s lemma or stability
are also independent of c0), another possible way of treating the case c0 = 0 consists
of rewriting the problem as the three-field formulation recently analyzed in [23].

Natural extensions of this work include the development of conservative schemes
based on finite volume elements and discontinuous Galerkin methods, and we also
envisage the study of model generalizations to nonlinear (pressure dependent) perme-
ability and finite deformations.
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