
Chapter 14
Activation Models for the Numerical Simulation
of Cardiac Electromechanical Interactions

Ricardo Ruiz-Baier, Davide Ambrosi, Simone Pezzuto, Simone Rossi,
and Alfio Quarteroni

Abstract This contribution addresses the mathematical modeling and numerical
approximation of the excitation-contraction coupling mechanisms in the heart.
The main physiological issues are preliminarily sketched along with an extended
overview to the relevant literature. Then we focus on the existing models for the
electromechanical interaction, paying special attention to the active strain formula-
tion that provides the link between mechanical response and electrophysiology. We
further provide some critical insight on the expected mathematical properties of the
model, the ability to provide physiological results, the accuracy and computational
cost of the numerical simulations. This chapter ends with a numerical experiment
studying the electromechanical coupling on the anisotropic myocardial tissue.

14.1 Introduction

The interaction mechanism between contraction of the cardiac muscle and elec-
trical propagation is a complex multiscale phenomenon of vital importance in a
wide range of medical applications (Smith et al., 2004). From a purely mechani-
cal point of view, key features of muscle behavior include large deformations, fiber
anisotropy, heterogeneity of the tissue, and the ability to shorten when a substantial
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intracellular calcium concentration change occurs. The dynamics is driven by a trav-
eling action potential, usually modeled by a reaction-diffusion equation, where the
ions species diffusion activates the ionic currents reaction, which eventually dictate
the depolarization and repolarization of the cells. Ionic currents depend on the jump
in electric potential according to Ohm’s law whereas the conductance is typically
a highly nonlinear function of voltage described through gating variables or, more
recently, by means of Markov models. Such a nonlinearity is responsible for the
complex excitable behavior of the cardiac action potential cycle: rapid upstroke of
depolarization, followed by a plateau phase and a repolarization of the cells when
a voltage threshold is overcome. A variety of models exists in this respect, with in-
creasing detail in the description of ionic channels and intracellular reactions taken
into account (CellML, 2000; Rudy and Silva, 2006). Heuristic systems of equations,
that only reproduce a qualitative pattern of the voltage wave, are very useful in pro-
viding a framework simple enough to allow for mathematical analysis. However,
these kind of phenomenological models are not able to describe the correct behavior
of the cell in a pathological condition, or correctly describe drug interactions; fur-
thermore, the concentration of specific ions like intracellular calcium that induces
contractions and relaxations of cardiomyocytes, is typically not present. Therefore
a more detailed insight of several ionic currents is needed to provide the correct
physiological contractility.

The numerical simulation of these complex multiphysics and multiscale systems
poses a major challenge even if state-of-the-art computational techniques and com-
puter architectures are employed. Finite element formulations of nonlinear elasticity
for the myocardial tissue have been proposed since more than a decade (Nash and
Hunter, 2000), followed by a series of works focusing on the integration of cardiac
systems including elasticity, electricity, perfusion models, and on the close connec-
tion of the proposed models with experimental observations (see a review in Kerck-
hoffs et al., 2006). If a certain level of accuracy of the geometrical description of a
patient specific model is desired and the solution is to be obtained within a reason-
able amount of time, there is no way around using parallel computers (and suitable
numerical techniques combined with scalable algorithms exploiting the underlying
architectures). The public availability of scientific computing libraries such as, e.g.,
LifeV (2001), Continuity (2005) and Chaste (Pitt-Francis et al., 2009), represents a
substantial step forward in this direction. Parallel algorithms capable of performing
cardiac mechano-electrical simulations have recently been implemented reporting
scalable behaviors in Chapelle et al. (2009); Reumann et al. (2009); Lafortune et al.
(2012); Nobile et al. (2012).

In this paper we aim at investigating some features of the active strain formu-
lation in cardiac electromechanics (Cherubini et al., 2008; Ambrosi et al., 2011;
Nobile et al., 2012). Such approach is based on the assumption that the mechani-
cal activation, laying in the core of the cell-level excitation-contraction mechanism,
may be represented as a virtual multiplicative splitting of the deformation gradi-
ent into a passive elastic response, and an active deformation depending directly
on the electrophysiology. Alternative options that avoid such decomposition at the
deformation level are active-stress descriptions (see, e.g., Nash and Panfilov, 2004;
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Pathmanathan and Whiteley, 2009; Land et al., 2012) where the stress is composed
as a sum of a passive and an active part, the latter determined by the so-called ac-
tive tension, also depending on the electrical activation of the cell. In this paper we
address the feasibility of numerical simulations for the macroscopic coupling using
the active strain approach, and we present in detail an example of the full electrome-
chanical interaction. However, we will not discuss advantages and disadvantages of
the different strategies, rather we refer to Ambrosi and Pezzuto (2012) and Rossi et
al. (2012) for a thorough comparison.

This paper is organized as follows. In Sect. 14.2 we summarize the main math-
ematical characteristics of the electrical and mechanical problem and we detail the
specific modeling strategy that we adopt. The electromechanical coupling, i.e. the
cell contraction dictated by the electrical signal and the corresponding feedback (the
stretch activated currents) are illustrated in Sect. 14.3. The computational method is
outlined in Sect. 14.4 where we also present a numerical example, and we close with
a discussion in Sect. 14.5.

14.2 Mathematical Models for Cardiac Electromechanics

Force balance equations for an elastic continuum medium are employed to describe
large deformations of the myocardium under influence of the fluid pressure, the
surrounding organs and its own contraction. Such framework has to be coupled with
the macroscopic bidomain or monodomain equations accounting for the propagation
of the electric potential and ionic currents.

14.2.1 Models for the Heart Electrophysiology

Starting from the pioneering work of Hodgkin and Huxley (1952) on the nerve axon
model, several increasingly sophisticate models have been developed for the prop-
agation of electrical signals in cardiac tissue. Here we separate between models for
cardiac cell electrophysiology, and macroscopic tissue-level models based on con-
tinuum mechanics.

Popular cardiac cellular electrophysiology models include those based on exper-
imental observations on animals (e.g., Luo and Rudy, 1991) and humans (see, e.g.,
Iyer et al., 2004; ten Tusscher et al., 2004). Such models address cell excitation in
isolation from the rest of the cardiac function. They essentially include a descrip-
tion of the dynamics of ionic species (mainly potassium, calcium, and sodium) along
with the gating processes of several proteins that are blocked or allowed to transport
ions through the cellular membrane. A drastic decrease of computational cost can be
obtained by using simplified low dimensional models based on phenomenological
descriptions of such mechanisms (Rogers and McCulloch, 1994; Bueno-Orovio et
al., 2008). The price to pay for this simplification, provided that a correct behavior of
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the voltage field is reproduced, is that ionic species are not well resolved. Neverthe-
less, these types of electrical models are able to provide some specific information
of interest, such as contractility.

Systems of ordinary differential equations (ODEs) of the form

∂tv − Iion(v,w) = 0, ∂tw − m(v,w) = 0, (14.1)

are employed to describe these cellular models, without any spatial detail. Here
v denotes the transmembrane potential field, w contains all gating variables and
concentration of ionic species, and Iion and m drive the kinetics of the system, its
specific form depending on the chosen cellular model.

Models at the cell level can be incorporated into macroscopic descriptions for
the propagation of electrical excitation throughout the cardiac muscle in the sim-
plest way assuming homogeneous diffusion of ionic species on the microstructure
of the substrate. The texture of the cardiac tissue can be incorporated observing that
cellular and extracellular components are characterized by different diffusivities.
A homogenization process yields the so-called bidomain equations (Tung, 1978):

∂tv − ∇·(De∇ue) + Iion = I i
app, ∂tv + ∇·(Di∇ui) + Iion = I e

app, (14.2)

where ui and ue are the intra- and extracellular electric potentials (both defined in
every point of the domain), and (I i

app, I
e
app) are possible externally applied stimuli.

The cardiomyocytes are organized in fibers that originate the anisotropic conduc-
tivity in the electrophysiology of the heart. The myofiber angle varies continuously
from about −60° (inverse circumferential axis) at the epicardium, to about 70° at the
endocardium. From the apical region, the myofibers that conform the tissue follow a
right helical orientation towards the subendocardium and a left helical path parallel
to the wall on the subepicardium. On the mid-wall region, cardiac fibers exhibit a
circumferential orientation, and on the basal site fibers cross from subendocardial
to the subepicardial region. Myocardial propagation velocities in the parallel and
perpendicular myofiber directions can differ up to an order of magnitude. These
geometrical features are encoded in the anisotropic conductivity tensors Di and De
(Colli Franzone and Pavarino, 2004).

14.2.2 Mechanical Response of the Myocardium

The characterization of the material properties of the cardiac tissue requires precise
experimental settings that should reproduce physiological conditions as close as
possible. Usual tests include uniaxial and biaxial tension experiments, as well as
shear tests, from which it is possible to recover stress-strain relations on the different
directions of the anisotropic medium (fiber, sheets, and sheet-normal axes).

The usual kinematics descriptors of a continuum medium placed in Ωo ⊂ R
3

in its reference configuration are the deformation gradient of its motion F and the
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right Cauchy-Green tensor C = FTF. We denote by I1 = tr C, I2 = 1
2 (I 2

1 − tr C2),
I3 = det C, the principal invariants of C.

Due to the alignment of cardiac fibers and their organization in sheets, the my-
ocardium exhibits an orthotropic behavior that can be conveniently illustrated in-
troducing the orthogonal unit vector fields f0 and s0 denoting the orientation of the
fibers and collagen-sheets in the reference configuration. A hyperelastic material
with constitutive response invariant with respect to rotations around f0 and s0 is de-
scribed by a strain-energy function W (F) that depends on a set of invariant such as
I1,2,3, and also pseudo-invariants defined as follows:

I4,f = C : f0 ⊗ f0, I5,f = C2 : f0 ⊗ f0, I8,f s = C : sym(f0 ⊗ s0), (14.3)

and analogously I4,s and I5,s .
Orthotropic strain-energy functions were suggested in Usyk et al. (2000); Costa

et al. (2001); Holzapfel and Ogden (2009), that in addition are able to represent
the behavior of the laminar sheets in which cardiac myofibers are structured. For
instance, the energy function proposed by Holzapfel and Ogden (2009) is given by

W (F) = a

2b

(
eb(I1−3) − 1

) +
∑

i=f,s

ai

2bi

(
ebi (I4,i−1)2 − 1

) + af s

2bf s

(
ebf sI

2
8,f s − 1

)
,

(14.4)
where the eight parameters a, b, af , bf , as , bs , af s and bf s are experimentally
fitted.

According to Ashikaga et al. (2008), the myocardium experiments a change in
myocardial volume of up to 10 %. This is possibly due to blood-filled spaces within
the myocardium which may communicate with the ventricular lumen or from the
coronary arteries from which blood is expelled during systole. However incompress-
ibility of the medium is often assumed as it is mainly constituted by water. In strictly
incompressible models, the pressure field is the Lagrange multiplier enforcing the
constraint, and in slightly compressible models a compressibility modulus penal-
izes the variation in density. For evident reasons, strict incompressibility is more
popular when analytical methods are applied, as one degree of freedom drops out
in homogeneous deformations, while penalization is often preferred in numerical
codes, where no compatibility between spaces of representation of displacement
and pressure fields must be abided.

14.3 Activation and Contraction

Myocardial systolic contraction is usually modeled at the macroscale by incorpo-
rating a possibly anisotropic, additive stress contribution in the force balance (Nash
and Panfilov, 2004; Smith et al., 2004; Göktepe and Kuhl, 2010; Pathmanathan et
al., 2010).

A different approach is to introduce a multiplicative decomposition of the strain.
The active strain method, introduced in the context of biomechanics in Taber and
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Fig. 14.1 Sketch of the
active strain decomposition
entailing an intermediate
virtual configuration Ωe
between the reference state
Ωo and the current
configuration Ω . Similar
splittings have been proposed
in finite elastoplasticity (Lee
and Liu, 1967), growth and
material remodeling (Taber
and Perucchio, 2000; Menzel
and Waffenschmidt, 2009),
and mechano-chemical
interactions (Murtada et al.,
2010)

Perucchio (2000); Nardinocchi and Teresi (2007), assumes that the deformation gra-
dient F can be rewritten in terms of a Lee-type multiplicative decomposition (Lee
and Liu, 1967), i.e.

F = FeFo, (14.5)

where Fo is the active deformation, to be constitutively prescribed in terms of ionic
species concentration, and Fe is the passive elastic deformation (see Fig. 14.1).
Whichever approach that is chosen, the model should satisfy due mathematical
properties (such as frame indifference and ellipticity of the total stress), and the con-
stitutive laws need to recover physiological relevant behaviors (such as the Frank-
Starling effect, where an increase of chamber volume at end-systolic pressure and
stroke work reflects on the tissue as a monotonic increase in isometric tension), (Lee
and Liu, 1967).

Comparisons between the usual active stress method and the active strain ap-
proach from a numerical viewpoints has been carried out in Rossi et al. (2012).
Defining the variables γf , γs , γn as the relative displacements in the directions f0,
s0, n0, (fibers, sheets and sheets-normal directions) of a single cell, respectively, the
local deformation is

Fo = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0. (14.6)

Note that γf represents the active shortening of the cardiomyocytes, whereas γs , γn

will take into account the associated thickening, in order to satisfy the incompress-
ibility of the cell itself (Iribe et al., 2007; Smerup et al., 2009). In Nardinocchi and
Teresi (2007), Evangelista et al. (2011) and Nobile et al. (2012), the contribution
of the terms depending on γs and γn are not included. Analogously, for some acti-
vation models (see, e.g., Göktepe and Kuhl, 2010; Rausch et al., 2011), the active
tension is assumed to act exclusively along the fibers direction. However, biaxial
tests provide a measure of the active contributions in the transverse direction. This
quantification can be obtained by either measuring the different rates of calcium
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release in these directions (as done in Usyk et al., 2000) and then translating this
information into active strains, or assuming transverse isotropy of the mechanical
response at the cell level (as in Rossi et al., 2012). Moreover, if the components of
the activated deformation Fo satisfy the condition

(1 + γf )(1 + γs)(1 + γn) = 1, (14.7)

then det Fo ≡ 1, a very convenient choice from a numerical point of view for this
nonlinear problem, since convergence has to be incrementally reached.

The thermodynamic assumption of the multiplicative decomposition (14.5) is
that the active deformation det Fo stores no energy, so that the strain-energy function
is Ŵ = W (Fe) and

Wstrain = det FoŴ = det FoW
(
FF−1

o

)
. (14.8)

The activation γf depends on the concentration of ionic species as can be deduced
from ordinary differential equation models (Rice et al., 2008; Murtada et al., 2010;
Nobile et al., 2012), which can be summarized in the symbolic equation

∂tγf − G(w, γf ) = 0, (14.9)

where G defines the activation dynamics depending on ionic concentrations denoted
by the vector w.

In the reference configuration Ωo, the equations governing the electromechanical
interaction under active strain read

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇·
(

det Fo
∂W (FF−1

o )

∂F
− pF−T

)
= 0,

det F = 1,

in Ωo;

χcm∂tv − ∇·(F−1DeF−T ∇ue
) + χ(Iion + Isac) = I i

app,

χcm∂tv + ∇·(F−1DiF−T ∇ui
) + χ(Iion + Isac) = I e

app,

∂tw − m(v,w) = 0,

∂tγf − G(w, γf ) = 0,

in Ωo × (0, T ).

(14.10)
System (14.10) is to be completed with suitable initial data for v, w as well as with
boundary conditions for all fields. The usual prescription of voltage at the initial
time is that a large enough perturbation is located at the apex, so that an electric
wave starts traveling up to the base, producing the due ionic currents and mechanical
contraction. This initial condition corresponds to immaterial assumption that the
electric signal, actually produced at the sinoatrial node, has been traveling very fast
along the Purkinje fibers down to the apex, where they finely branch producing a
volumetric diffusion at t = 0. Since the Purkinje fibers also branch up from the apex
towards the base at the subepicardial level, different protocols are often used to
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Fig. 14.2 Fiber distribution on the myocardium (left panel), and sketch of the geometrical domain
decomposition of the corresponding mesh into 16 subdomains (right panel)

stimulate the entire endocardial surface. This is done either synchronously or with
a slight delay going from apex to base. No-flux boundary conditions apply to the
electric variables, while mixed boundary data are imposed to the displacement field.
Robin conditions mimic the presence of the pericardial sac at the outer wall, while
blood pressure inside the ventricles is computed on the basis of pressure-volume
diagrams, relating the blood pressure depending to the ventricular volume.

14.4 Numerical Simulation

In what follows we present a simple numerical example illustrating the feasibility
of electromechanical active strain models. The simulations reported in the present
work are performed using the parallel finite element library LifeV (2001). We em-
ployed a biventricular geometry (originally from Sermesant, 2003) where the mesh
consists of 29 504 tetrahedral elements. Myocardial fibers are distributed in the mus-
cle following an analytical description so that the orientation varies linearly from
an elevation angle (between the short axis plane and the fiber) of 65° in the epi-
cardium, to −65° in the endocardium (see Fig. 14.2, left panel). The domain is then
partitioned into 16 subdomains (Fig. 14.2, right panel).

Since we are interested in the myocardium activation more than the passive prop-
erties of the muscle, we consider a simple neo-Hookean material with strain-energy
function W = μ

2 F : F, where μ = 385 kPa, in all regions of the cardiac muscle.
Moreover, the active strain Fo is chosen to be transversely isotropic, so γs = γn = 0
and therefore condition (14.7) is not needed. This means that the second Piola-
Kirchhoff tensor reads:

S = μ(1 − γf )I + μγf

2 − γf

1 − γf

f0 ⊗ f0. (14.11)
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The specifications for (14.1) are in accordance with the minimal model of Bueno-
Orovio et al. (2008), a four-equations phenomenological model for human ventri-
cles. The auxiliary variables are w = (w1,w2,w3) which are phenomenological
quantities (no direct physical interpretation), however w3 behaves like a re-scaled
intracellular calcium concentration. The reaction terms are defined as

Iion(v,w) = −w1H(v − θ1)(v − θ1)(vv − v)/τf i + (v − v0)
(
1 − H(v − θ2)

)
/τ0

+ H(v − θ2)/τ3,0 − H(v − θ2)w2w3/τsi, (14.12)

and

m(v,w) =
⎛

⎜
⎝

((1 − H(v − θ1))(w1,inf − w1)/τ
−
1 − H(v − θ1)w1/τ

+
1

(1 − H(v − θ2))(w2,inf − w2)/τ
−
2 − H(v − θ2)w2/τ

+
2

((1 + tanh(k3(v − v3)))/2 − w3)/τ3)
T

⎞

⎟
⎠ , (14.13)

where H stands for the usual Heaviside function. The switches and infinite values
are defined as follows:

τ−
1 = (

1 − H
(
v − θ−

1

))
τ−

1,1 + H
(
v − θ−

1

)
τ−

1,2 (14.14)

τ−
2 = τ−

2,1 + (
τ−

2,2 − τ−
2,1

)(
1 + tanh

(
k−

2

(
v − v−

2

)))
/2 (14.15)

τ3,0 = τ3,0,1 + (τ3,0,2 − τ3,0,1)
(
1 + tanh

(
k3,0(v − v3,0)

))
/2 (14.16)

τ3 = (
1 − H(v − θ2)

)
τ3,1 + H(v − θ2)τ3,2 (14.17)

τ0 = (
1 − H(v − θ0)

)
τ0,1 + H(v − θ0)τ0,2 (14.18)

w1,inf =
{

1, v < θ−
1

0, u ≥ θ−
1

(14.19)

w2,inf = (
1 − H(v − θ0)

)
(1 − v/τ2,∞) + H(v − θ0)w

∗
2,∞. (14.20)

The model reproduces the correct shape of the voltage wave. For the sake of sim-
plicity, we use the epicardial parameters for the whole cardiac muscle: θ0 = 0.005,
θ1 = 0.3, θ2 = 0.13, θ−

1 = 0.1, τ3,0,1 = 91, τ3,0,2 = 0.8, τ3,1 = 2.7342, τ3,2 = 4,
τ0,1 = 410, τ0,2 = 7, w∗

2,∞ = 0.5, vv = 1.61, τ−
1,1 = 80, τ−

1,2 = τ+
1 = 1.4506,

τ−
2,1 = 70, τ−

2,2 = 8, τ+
2 = 280, k−

2 = 200, v−
2 = 0.016, τf i = 0.078, k3,0 = 2.1,

v3,0 = 0.6, k3 = 2.0994, v3 = 0.9087, τsi = 3.3849, τ2,∞ = 0.01. The initial data
corresponds to w1 = w2 = 1, w3 = 0.

The governing ODE for the activation corresponds to (14.9), as introduced in
Rossi et al. (2011) and Nobile et al. (2012), with the specification G(γf ,w3) =
−0.02w3 − 0.04γf .

The time sequence of transmembrane potential, activation γf and other ionic
concentrations are illustrated in Fig. 14.3 for a point on the epicardial surface. The
highest activation value is attained with a delay of about 120 ms with respect to that
of the action potential.
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Fig. 14.3 Time evolution of
the electric fields in a specific
epicardial position of the
tissue. Plotted quantities are
the transmembrane potential
v, gate variables
w = (w1,w2,w3) and the
mechanical activation γf

which are all presented in
dimensionless form

Robin boundary condition mu + Pn = 0, with m = μ = 385 kPa, has shown
to yield a qualitatively correct end-systolic displacement magnitude (around 25 %)
and rotation of the left ventricle, as reported in Rossi et al. (2012). Quadratic finite
elements are used for displacement, whereas all other fields are discretized using
continuous piecewise trilinear elements, in order to satisfy Brezzi-Babuška inf-sup
condition. The timestep, fixed during the simulation, is �t = 0.01 ms and, as usual
in electromechanically coupled computational models (see, e.g., Nash and Panfilov,
2004; Cherubini et al., 2008; Pathmanathan and Whiteley, 2009; Land et al., 2012),
we iterate between electrical and mechanical problems in a segregated mode. The
nonlinear equations arising from the discretization of the mechanical problem are
linearized using the Newton-Raphson method. We find that no more than 6 iterations
are needed to converge with a tolerance of εtol = 10−8, with the maximum number
of iterations being always attained around the upstroke phase. The linear systems
are solved using the GMRES iterative method (with a tolerance of ε̂tol = 10−7).
The average overall CPU time spent per time step is 3.5 seconds, using 32 cores
distributed on 4 nodes on the Intel Harpertown cluster Callisto at EPFL.1

An external stimulus I e
app = −100 µA is applied at the apex at t = 0, in order

to generate a traveling wave for the transmembrane potential, initially everywhere
at rest (v = −84 mV). Figure 14.4 presents three snapshots of the solution of the
excitation-contraction problem at times t = 1, t = 40, t = 230 and t = 540 ms,
where fiber directions are represented by the gray volume arrows and the color-map
shows the values of the transmembrane potential v on the undeformed solid. Notice
that the activation patterns adopt a profile dictated by the tissue anisotropy.

1http://hpc-dit.epfl.ch/clusters/callisto.php.

http://hpc-dit.epfl.ch/clusters/callisto.php
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Fig. 14.4 Snapshots of the transmembrane potential field, plotted on the deformed configuration,
and fiber distribution at times t = 1, 40, 230, 540 ms, plotted on the undeformed configuration

14.5 Conclusions and Future Directions

The material outlined in this paper reports some recent work in modeling and nu-
merical simulation of cardiac electromechanics using the active strain approach.
Even though several physical approximations apply, recently performed compar-
isons with experimental observations by Evangelista et al. (2011) (in terms of tor-
sion of the left ventricle, endocardial volumes, and circumferential strains) and by
Rossi et al. (2012) (in terms of end-systolic normal and shear strains) suggest the
potential effectiveness of active-strain based models.

The effectiveness of an electromechanical model in capturing the key aspects of
the physiology depends on several factors. In particular, we take electric models
from a cell level and incorporate them in a force balance equation that holds at the
macroscale. Yet, it is not obvious that such an uplift between spatial scales can be
directly operated, without a suitable homogenization procedure. This is a concern
shared by all current models of cardiac electromechanics, and needs to be addressed
in further detail.
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