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The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the
dynamics of ventricular contraction are extremely important in understanding the overall function of the
heart. In this paper we generalize previous contributions on the active strain formulation and propose a
new model for the excitation-contraction coupling process. We derive an evolution equation for the
active fiber contraction based on configurational forces, which is thermodynamically consistent.
Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic
contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall.
A series of numerical tests highlights the importance of considering orthotropic mechanical activation in
the heart and illustrates the main features of the proposed model.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

Cardiac muscle is highly heterogeneous and features an aniso-
tropic and overall nonlinear behavior. A helical arrangement of
families of co-aligned cardiomyocytes supported by an extracel-
lular fibrous collagen network defines the local macroscopic
structure of the tissue and features a complex passive response of
the material. During systole the tissue activates and the car-
diomyocytes contract. Mechano-chemical activation is mainly
governed by the binding of calcium to troponin C, exposing binding
sites for myosin on actin filaments. This triggers sarcomere
contraction, which can be also modeled as a process that
depends on the local strain and strain rate. Despite numerous
emerging studies on cardiac contraction mechanisms ranging from
experimental observations to theoretical formalisms and
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mechanistic explanations, the underlying multiscale and multi-
physics phenomena governing the excitation-contraction coupling
are still far from being fully understood. One often needs to limit
the study to a specific sub-aspect of the entire process, com-
pounding all remaining effects into simplified descriptions.

In this work, we focus on the mathematical modeling of active
strain generation at cellular and organ levels. The upscaling
strategy is incorporated in the model following an anisotropic
active strain formalism (Nardinocchi and Teresi, 2007; Ruiz-Baier
et al., 2013a), where the force balance determining the motion of
the tissue depends on local distortion of the microstructure
followed by a macroscopic rearrangement of the material
recovering compatibility of the deformation. Mathematically,
this corresponds to a decomposition of strains. Dissipative effects
taking place during ventricular contraction are introduced
assuming that the energy is a function of an auxiliary internal
state variable, which represents the level of mechanical tissue
activation. Then, from classical laws of thermodynamics we
derive an evolution equation for the active strain, which also
depends on local stretch and ionic concentrations. The same
theoretical derivation can also be used to define an evolution law
for the active stress tensor in usual active stress formulations.
Similar thermodynamically consistent models to the one

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:simone.rossi@epfl.ch
mailto:toni.lassila@epfl.ch
mailto:ricardo.ruiz.baier@gmail.com
mailto:ricardo.ruiz@epfl.ch
mailto:adelia.sequeira@math.ist.utl.pt
mailto:adelia.sequeira@math.ist.utl.pt
mailto:alfio.quarteroni@epfl.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2013.10.009&domain=pdf
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2013.10.009
http://dx.doi.org/10.1016/j.euromechsol.2013.10.009
http://dx.doi.org/10.1016/j.euromechsol.2013.10.009


S. Rossi et al. / European Journal of Mechanics A/Solids 48 (2014) 129e142130
presented herein have been derived in (Sharifimajd and
Stålhand, 2013; Stålhand et al., 2008, 2011) for smooth and
skeletal muscle and in Ruiz-Baier et al. (2013b) for isolated car-
diomyocytes. We present here a phenomenological description
of the excitation-contraction coupling, but an extension to more
physiologically detailed models (Murtada et al., 2010; Negroni
and Lascano, 2008; Rice et al., 2008; Washio et al., 2012) is
conceptually straightforward. Our interest is more oriented to
the development of subcellular activation mechanisms tailored
for the study of macroscopic cardiac electromechanics. Many
studies have focused on descriptions of the contraction in the
“mean fiber direction” considering the contraction of the tissue
as transversely isotropic. We propose a simple model that links
the microscopic and macroscopic deformations explaining cross-
fiber shortening.

The validity of our new interpretation is assessed by simulation
of the entire cardiac electromechanical function. The passive
response of the material is modeled using the orthotropic
Holzapfel-Ogdenmodel (Göktepe et al., 2011; Holzapfel and Ogden,
2009), including fiber and sheetlet directional anisotropy, whereas
the tissue electrophysiology is represented by the monodomain
equations endowed with the minimal membrane model for human
ventricular electrophysiology from Bueno-Orovio et al. (2008). We
choose a staggered algorithm to describe the interaction between
the electrophysiology and soft tissue mechanics. This allows us to
follow the intrinsic differences in the time scales of both phe-
nomena and is computationally less involved than the so-called
monolithic schemes (where all subproblems are solved simulta-
neously) that are, on the other hand, more stable (Dal et al., 2013;
Göktepe and Kuhl, 2010; Pathmanathan et al., 2010).

For the proposed activation model, the knowledge of the di-
rections of anisotropy is essential. In many cases the fiber recon-
struction by DT-MRI is usually too noisy to be used in simulations,
as such (Nagler et al., 2013). For this reason, a rule-based fiber field
is constructed instead. Here we follow the example in Wong and
Kuhl (2013) and build sheetlet and fiber fields using simple
geometrical and physiological assumptions.

This paper is organized as follows. Section 2 outlines the
theoretical settings of the formulation. Starting from the gener-
alized dissipation inequality for isothermal processes, we intro-
duce the active strain formulation and show how to link
microscopic and macroscopic deformations. We use some ther-
modynamical restrictions to build an evolution law for the active
strains and we show how the same theoretical setting could be
applied to the more common active stress formulation. A model
for the macroscopic electromechanical coupling, along with
algorithmic considerations is briefly presented in Section 3. Here
we also detail the procedure used to construct the fiber and
sheetlet fields. Numerical results are collected in Section 4,
where we present four test cases to asses the validity of the
proposed model. Special emphasis is placed on demonstrating
that with the new orthotropic activation model the contraction
pattern of the ventricle exhibits the correct physiological amount
of wall thickening, torsion, and longitudinal shortening. Finally,
in Section 5, we discuss the implications and limitations of our
model.
2. Theoretical setting

2.1. Energy balance and dissipation inequality

Consider a continuum embedded in a region Ut, relative to the
natural (unloaded and stress-free) configuration U. The global form
of energy balance in Ut reads
_U þ _K ¼ Qþ Pext;
where U is the internal energy,K the kinetic energy, andQ the heat
transfer rate. The total external powerPext is the sum of the of work
rate done by body forces on the material volume Ut and the work
rate done by the surface forces on its boundary vUt. The power
balance states that Pext is balanced by the sum of the internal po-
wer Pint and the rate of change in the kinetic energy _K, that is

_U ¼ QþPint: (1)

In general, Pint can be represented by the set {L1,.,Lm} of
intensive variables describing the local kinematics of the contin-
uum corresponding to the set {l1,.,lm} of extensive thermody-
namic tensions work conjugate with the rates f_L1;.;_Lmg, such
that Pint ¼ R

Ut

Pm
i¼1li$_Li. In classical continuum mechanics, in the

natural configuration U, the intensive and extensive variables sets
only contain the strain tensor E and the symmetric stress tensor S
work conjugate with the strain rate _E in such a way that
Pint ¼ R

U
S : _E. For this reason, from now on, we will assume the

total internal power to be the sum of the conventional internal
power and other possible additional contributions

Pint ¼
Z
U

S : _Eþ
Z
U

Xm
i¼1

li$ _Li:

Denoting with u the internal energy per unit of mass, r the heat
supply, q the heat flux vector and T the temperature, the general
material form of equation (1) reads

D
Dt

Z
U

ru ¼
Z
vU

q$nþ
Z
U

rr þ
Z
U

S : _Eþ
Z
U

Xm
i¼1

li$ _Li;

where r is the density of the material in the reference
configuration.

The dissipation inequality in global form reads

_S � J ; (2)

where S is the internal entropy and J the entropy flux. Introducing
the entropy per unit of mass h, inequality (2) (in the reference
configuration) becomes

D
Dt

Z
U

rh � �
Z
vU

q
T
$nþ

Z
U

r
r
T
:

In local form then the first and second law of thermodynamics
in material coordinates are, respectively (Coleman and Noll, 1963;
Epstein, 2012),

r _u ¼ S : _Eþ
Xm
i¼1

li$ _Li þ rr � V$q; (3)

r _h � r
r
T
� V$

�q
T

�
; (4)

where gradients and divergences are operated with respect to the
coordinates X in the reference configuration. It will be useful to
consider the stress power S : _E to be given in the form P : _F, where P
is the mixed (two-point) first Piola-Kirchhoff stress tensor, conju-
gate with the rate of the deformation gradient tensor _F (see a
summary of used notation in Table 1).



Table 1
Nomenclature employed through the text.

U Internal energy
u Internal energy per unit mass
K Kinetic energy
Q Heat flow
T Temperature
r Heat supply
q Heat flux vector
Pext External power
Pint Internal power
l General thermodynamic tension
L General state variable
S Entropy
J Entropy flow
h Entropy per unit mass
F Deformation gradient tensor
FA Active part of the deformation gradient tensor
E Green-Lagrange strain tensor
f0 Material fiber vector
s0 Material sheetlet vector
n0 Material sheetlet-normal vector
P First PiolaeKirchhoff stress tensor
S Second PiolaeKirchhoff stress tensor
r Material density
j Free energy per unit volume
H Active stress internal state variable
c Chemical species vector
gj Macroscopic shortening in the j� th direction
xj Microscopic shortening in the j� th direction
m Viscosity coefficient
RFL Cardiomyocyte forceelength relationship
q Fiber rotation angle
n Surface normal direction
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Expanding the divergence operator in (4) and using (3) to
eliminate r we obtain

r _h � 1
T2

q$VT þ 1
T
r _u� 1

T
P : _F� 1

T

Xm
i¼1

li$ _Li;

which can also be written, after some manipulations, as

�rð _u� T _hÞ þ P : _Fþ
Xm
i¼1

li$ _Li �
1
T
q$VT � 0:

Introducing the Helmholtz free energy per unit of mass, defined
as the negative Legendre transformation of the internal energy
density with respect to the entropy density jhu�Th, from the
previous relation we deduce the dissipation inequality

�r
�
_jþ h _T

�
þ P : _Fþ

Xm
i¼1

li$ _Li �
1
T
q$VT � 0:

If we restrict to isothermal processes, in which temperature is
constant in time, and assume no heat flux, we find

�r _jþ P : _Fþ
Xm
i¼1

li$ _Li � 0: (5)

To enforce irreversibility of muscular contraction, we postulate
the existence of additional internal state variables which influence
the free energy ( j ¼ j(Li)) that account for dissipative effects
(Coleman and Gurtin, 1967). The generalized internal power (per
unit volume) P : _FþPm

i¼1li$
_Li allows us to extend conventional

continuum mechanics to consider for example microscopic force
balance (Gurtin et al., 2010). In the following, the definition of the
total internal power will clarify the meaning of the quantities Li
and li. Moreover, we assume local thermodynamic equilibrium to
hold during systole. This implies that, away from equilibrium, the
local relations between thermodynamic quantities are assumed to
be the same as for a system in equilibrium (Gurtin et al., 2010). We
note that through (2), we have tacitly assumed the system to be
closed. This assumption is in general not satisfied by the cardiac
muscle that receives oxygen and other nutrients at each cycle. In
fact, during muscle relaxation the entropy of the system decreases
to bring cells back to their thermodynamically unstable (resting)
state (Cesarman and Brachfeld, 1977), to allow for another beat.
During systole, instead, the energy received in the relaxation phase
is used to achieve cellular contraction such that the entropy of the
system increases. This motivates us to use inequality (5) to deduce
an evolution equation for the mechanical activation of cardiac
tissue.

2.2. Dislocation approach

Experiments on isolated myocytes (Rice et al., 2008; Tracqui
et al., 2008) show that the relative shortening of the cell during
active contraction is not large, say between 5 and 10%. The
contraction, due to sliding of the myofilaments, can be interpreted
as a microscopic rearrangement of the sarcomeres. Several authors
have used this approach to describe deformations both at cellular
and organ level (Cherubini et al., 2008; Laadhari et al., 2013; Ruiz-
Baier et al., 2013b; Taber and Perucchio, 2000). From the mathe-
matical point of view this rearrangement can be achieved through a
multiplicative decomposition of the deformation gradient tensor
(Lee and Liu, 1967; Menzel and Steinmann, 2007) of the form
F ¼ FEFM, where FM and FE are the microstructural and elastic
deformation gradient tensors, respectively. Such a decomposition
accounts for introducing an intermediate frame between the
reference and the deformed configurations. We suppose that the
microstructural part of the deformation gradient takes the form
(Nardinocchi and Teresi, 2007)

FM ¼ Iþ xf f 05f 0 þ xss05s0 þ xnn05n0;

with the additional assumptions that det FM ¼ JM ¼ 1 and xs ¼ xn, so
that when a cell contracts in its longitudinal direction it expands in
the orthogonal directions. If an experimental fiber shortening of
about 10% is considered, then this strategy fails to reproduce
physiological wall thickening. Present models of cardiac function
are not able to explain ventricular wall thickening, being the role of
collagen sheetlets at the micro and macro levels still poorly un-
derstood (Quinn and Kohl, 2013). Nevertheless, it is known (see e.g.
(LeGrice et al., 1995)) that transverse shear along the collagen
planes is the main responsible for normal systolic wall thickening,
suggesting that different layers of myocytes can ”slide” over the
collagen. To include the hypothesis of sliding sheetlets, we propose
to introduce a macroscopic rearrangement mechanism that occurs
simultaneously with a microscopical rearrangement, described as
follows

F ¼ FEFSFM: (6)

We assume that fiber shortening is not influenced by the sliding
process and, therefore, the sliding sheetlet deformation gradient FS
can be written as

FS ¼ Iþ zss05s0 þ znn05n0;

which implies that the order of multiplication of the microscopic
and macroscopic deformation tensors in (6) is irrelevant since
FSFM ¼ FMFS. Notice that this assumption leads to the definition of a
total active deformation gradient tensor in the form
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F ¼ FEFA; (7)
with

FA ¼ Iþ gf f 05f 0 þ gss05s0 þ gnn05n0;

and gi ¼ zi þ xi þ zixi for i ˛ {s,n} and gf ¼ xf.
Fig. 2. Representation of the cross-fiber shortening model. The inextensible collagen
fiber wraps around the cell u times and then connects with the horizontal layers.
When the cell contracts, its radius enlarges and the two collagen sheetlets get closer.
The macroscopic wall thickening gs is a function of the cross-fiber shortening gn and it
is found using volume conservation.
2.3. Linking micro to macro

While measurements of fiber strains in the left ventricle are in
agreement with longitudinal strains measured in isolated car-
diomyocytes (Pustoc’h et al., 2005; Washio et al., 2012), strain
measurements along cross-fiber directions in left ventricular wall
indicate that cross-fiber shortening is greater than longitudinal fi-
ber shortening, except for the epicardial region (Rademakers et al.,
1994; MacGowan et al., 1997). We explain this macroscopic
behavior through a simple geometrical model that links the
microscopic deformation with the macroscopic one.

If a single cardiomyocyte shortens about 6% in its longitudinal
direction, it expands about 3% in the others. Assuming that during
contraction the cells remain in the same alignment state, the
macroscopic thickening would be proportional to the microscopic
one and to the number of transmural cells. This is in contrast with
experience, as the left ventricular wall can thicken up to 40% of its
diastolic value (Quinn and Kohl, 2013). To obtain such a large
deformation, different mechanisms must take place. Starting from
the idea of sliding collagen sheetlets, we use the fact that car-
diomyocytes are interwoven in an inextensible collagen skeleton.We
illustrate this idea in Fig. 1. Our hypothesis is that cells in the resting
state are surrounded by collagen and ordered in layerswhich, during
contraction, slide one over each other. To create wall thickening we
conjecture that, during contraction cells lying in the same layer tend
to line up. We derive now a novel orthotropic model of mechanical
activation capable of reproducing experimental deformation mea-
surements and linking cellular contraction and rearrangement.

Since a precise description of the collagen skeleton surrounding
the cells is not available, we consider the idealized representation
depicted in Fig. 2 and we derive cross-fiber shortening. We suppose
that a single cell is surrounded by an inextensible filament of
collagen of length L wrapping around the cells u times and con-
necting to the collagen sheetlet. When the cell is in resting state, we
denote with R the cell cross-section radius and with h the distance
between cell boundary and collagen thick layer, such that the total
height of the system H is 2R þ h. In the contracted state, we denote
with R

0
the cross-section radius of the contracted cell, h

0
the new
Fig. 1. Schematic view of tissue contraction. Cells are surrounded by inextensible collagen fi

each other. During contraction, cellular cross section diameter increases and the sheets g
thickening is due to rearrangement of cardiomyocytes in each layer.
distance between the cell and the collagen sheetlets such that
H

0 ¼ 2R
0 þ h

0
. By definition the shortening in the cross-fiber direc-

tion due to cellular rearrangement is zn ¼ (H
0 � H)/H. Using the fact

that the contracted cell radius is R
0 ¼ R(1 þ xn), where xn is the

microscopic cross-fiber thickening, we find

H0 � H ¼ 2Rxn þ h0 � h:

Simple geometrical arguments show that L ¼ 2upR þ h and
L
0 ¼ 2upR

0 þ h
0
. Enforcing L

0 ¼ L, we can solve for h
0 � h, which leads

to

H0 � H ¼ 2ð1� upÞRxn:
Eventually, we find that the configurational cross-fiber strain is

given by

zn ¼ 1� up
h
R þ 1

xn ¼ k0xn;

with k
0
< 0, and therefore the total cross-fiber active strain reads

gn ¼ ð1þ k0Þxn þ k0x2n: (8)

Using now cellular volume conservation, we can write xn as a
function of xf, that is xf ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xf

q
� 1 ¼ �xf =2þ Oðx2f Þ. Intro-

ducing the linearization in (8), we find the following relation be-
tween the active cross-fiber shortening and the cellular
longitudinal shortening
laments attached to horizontal sheets of collagen. The horizontal layers can slide over
et closer due to the inextensibility of collagen filaments. Our hypothesis is that wall
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gnx� 1þ k0

2
xf ¼ kxf :
The parameter k: ¼ �(1þk
0
)/2 > 0 is the link between the

microscopic and the macroscopic active deformations and its
magnitude depends on the transmural and circumferential position
(see (Bogaert and Rademakers, 2001)). In the following we will
consider k as a constant parameter with value 4, according to
experimental observations (Rademakers et al., 1994). To conclude,
the above considerations yield the following assumptions on the
coefficients of the orthotropic activation

gf ¼ xf ; gn ¼ kxf ; gs ¼ 1
ð1þ gf Þð1þ gnÞ

� 1; (9)

where the last relation follows from the volume conservation
condition det FA ¼ JA ¼ 1.

2.4. Thermodynamical conditions

Decomposition (7) suggests that the active deformation
gradient tensor can be regarded as the internal state variable
describing mechanical activation. In practice we consider a free
energy j additively decomposed as

jðFE; cÞ ¼ jðF; FA; cÞ ¼ jPðFÞ þ jAðF; FAÞ þ jCðcÞ; (10)

where c is a vector containing all the chemical species involved in
the considered process. Active deformations (here accounted by FA)
are affected by crossbridge dynamics and ionic activity. Active
stress is typically considered either as the sum of the densities of
crossbridges in strong configuration, or simply as the calcium
concentration (Hunter et al., 1997; Negroni and Lascano, 2008;
Yaniv et al., 2006).

Following (Stålhand et al., 2008) we suppose that there exists a
microscopic stress PA yielding the microscopical stress power
PA : _FA. The mixed tensor PA is a function of subcellular chemical
quantities encoded in c. Therefore the total internal power can be
written as

Pint ¼
Z
U

P : _Fþ
Z
U

PA : _FA: (11)

Introducing (11) in the generalized dissipation inequality (5) we
obtain�
P� vjP

vF
� vjA

vF

�
: _Fþ

�
PA � vjA

vFA

�
: _FA � vjC

vc
_c � 0: (12)

The quantity vjA/vFA represents the configurational forces asso-
ciated with FA. Relation (12) holds in particular for

P ¼ vjP

vF
þ vjA

vF
; (13)

mA
_FA ¼ PAðcÞ �

vjA

vFA
; 0 � vjC

vc
$ _c: (14)

2.5. Constitutive assumptions

If cardiac tissue is not activated, its (passive) mechanical
response can be accurately reproduced with orthotropic material
laws (Holzapfel and Ogden, 2009). The different mechanical
contraction properties along the preferred directions oriented ac-
cording to fibers and collagen sheetlets can be incorporated by
taking
jðF; I;0Þ ¼ a
2b

ebðI1�3Þ þ afs
2bfs

h
ebfsI28;fs � 1

i
þ
X

i˛ff ;sg

ai
2bi

�
ebiðI4;i�1Þ2 � 1

�
;

(15)

as suggested also in (Holzapfel and Ogden, 2009; Göktepe and Kuhl,
2010).

In what follows we assume that jP ¼ 0 and we focus on the
active part of the energy, resulting from (15) in the expression

jAðFEÞ ¼ a
2b

ebðIE1�3Þ þ afs
2bfs

�
ebfsðIE8;fsÞ2 � 1

�
þ
X

i˛ff ;sg

ai
2bi

�
ebiðIE4;i�1Þ2 � 1

�
;

(16)

where the elastic invariants are given by (see also (Rossi et al.,
2012))

IE1 ¼
�
1� gnðgnþ2Þ

ðgnþ1Þ2
�
I1 þ

�
gn

gnþ2
ðgnþ1Þ2 � gf

gfþ2

ðgfþ1Þ2
�
I4;f

þ
"
gn

gn þ 2

ðgn þ 1Þ2
� gs

gs þ 2

ðgs þ 1Þ2
#
I4;s;

IE4;f ¼ I4;f�
gf þ 1

�2; IE4;s ¼ I4;s
ðgs þ 1Þ2

; IE8;fs ¼ I8;fs�
gf þ 1

�
ðgs þ 1Þ

:

2.6. Active strain dynamics

Regarding (14) as the evolution equation for FA, one still needs to
specify the active stress PA. The vast majority of experimental
studies of active forces focus mainly on the longitudinal fiber di-
rection, making the prescription of the dynamics of all components
of the active stress difficult. A projection of the evolution equation
(14) on the fiber direction gives

mA _gf ¼
�
PA � vjA

vFA

�
: f 05f 0: (17)

After some manipulations, the second term on the right hand
side of (17) can be written as

vjA

vFA
: f 05f 0 ¼ �2

 
vjA

vIE1
þ vjA

vIE4;f

!
I4;f�

1þ gf

�3 : (18)

The active stress PA is directly related to the fraction of cross-
bridges in the strong configuration, as pointed out in (Sharifimajd
and Stålhand, 2013; Stålhand et al., 2008, 2011). However, the
detailed crossbridge dynamics is rarely available within phenom-
enological descriptions of the excitation-contraction coupling.
Therefore we suppose that active stresses depend on a single
chemical quantity c, to be specified later on. Then, it is clear from
(18) that evenwhen c vanishes, the tensor PA cannot be zero. In fact,
denoting with c0 the diastolic value of the quantity c and assuming
that for c¼ c0, we enforce that _gf remains zero if no excitation takes
place. This implies that PAjc¼c0

¼ vjA=vFA. Moreover the evolution
of the active strain strongly depends on the chosen constitutive law.
Since both the functional form of the energy and the values of the
corresponding parameters determining the material response are
still controversial, we “normalize” the active strain dynamics so
that it results independent of material parameters. Then the active
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stress PA projected onto the fiber direction is a function of the
amount of activation n, the actual stretch of the tissue I4,f, and of the
prestretch. More precisely, we suppose that

PA : f 05f 0 ¼
 
vjA

vIE1
þ vjA

vIE4;f

!0B@FA � 2I4;f	
1þ gf


3
1CA;

where FA is the part an adimensional active force exerted along the
fiber direction which includes the dependence on subcellular ki-
netics. To retrieve a material parameter-independent evolution law
for the active strain we further assume that
mA ¼ mAðvjA=vI

E
1 þ vjA=vI

E
4;f Þ, which is always positive (except for

materials with negative stiffness, not considered herein).
Derivation of the corresponding energies and parameter

normalization give the following dynamics for the active strain

mA _gf ¼ FA þ 2I4;f�
1þ gf

�3 � 2I4;f�
1þ gf

�3
�������
c¼c0

:

Finally, as we also expect that gf ¼ 0 for c ¼ c0 before any
excitation take place, we deduce that

mA _gf ¼ FA þ 2I4;f�
1þ gf

�3 � 2I4;f
���
c¼c0

: (19)

The excitation-contraction model is completed assuming that

FA ¼ af ðcÞRFL
	
I4;f


;

where a represents the active force of a single contractile unit
(sarcomere) and f(c) is the activation of the whole tissue. Here
RFL(I4,f) is the sarcomere forceelength relationship of intact cardiac
cells, fitted from Strobeck et al. (1986) by the following function
(see Ruiz-Baier et al. (2013b))

RFL
�
I4;f
�

¼ c½SLmin;SLmax�

(
c0
2
þ
X3
n¼1

h
cnsin

�
nI4;f l0

�

þ dncos
�
nI4;f l0

�i)
; (20)

where l0 stands for the initial sarcomere length (SL) and c½SLmin; SLmax�
is the characteristic function of the interval [SLmin, SLmax]. Many
other representations, as e.g. those analyzed in Böl et al. (2012)
incorporate active contractile forces depending on the local cell
stretch.

Finally, we assume that f(c) ¼ (c � c0)2 and we observe that the
dynamic behavior of the viscosity mA can be represented propor-
tionally to c, i.e., mA ¼ bmAc2, where mA is a strictly positive constant
(see e.g. (Stålhand et al., 2011, 2013)).

2.7. Active stress formulation

An alternative approach to the one presented above, typically
more common in cardiac mechanics, consists in an additive
decomposition of the stress tensor. In what follows we show
that it is possible to use a consistent thermodynamical frame-
work also for this formulation. We first introduce a new state
variable H, linking the microscopic and the macroscopic phe-
nomena. The rate of change of H is generally described by a
nonlinear function _H ¼ f ðF;H; cÞ, where c represents chemical
species driving mechanical activation. In this case we assume
the free energy to be a function of deformation F, activation
level H and chemical species c,

j ¼ jðF;H; cÞ:
An active stress model (tacitly) considers active deformations

deriving from the following decomposition of the free energy

jðF;HÞ ¼ jPðFÞ þ jAðFÞjBðHÞ þ jCðcÞ;

whereas the internal power is assumed as

Pint ¼
Z
U

P : _Fþ
Z
U

b _H:

Applying (5) and the assumptions above we get�
P� vjP

vF
� jB

vjA

vF

�
: _Fþ

�
b� jA

vjB

vH

�
_H � vjC

vc
$ _c � 0:

By assuming that all terms in the previous inequality are non-
negative, we have that in particular it holds for

P ¼ vjP

vF
þ jB

vjA

vF
(21)

mH
_H ¼ bðcÞ � jA

vjB
vH

0 � vjC
vc $ _c:

(22)

More precisely, (21) is the definition of the total stress, whereas
(22) can be regarded as an evolution equation for the mechanical
activation.

As an illustrative example, we show how it is possible to derive a
simple phenomenological model, similar to the one proposed in
(Nash and Panfilov, 2004) and used by several authors (Eriksson
et al., 2013; Dal et al., 2013; Xia et al., 2012) (modulus some mod-
ifications). In thesemodels the total active tension, denotedwith Ta,
is described by the equation

_Ta ¼ 3ðVÞ	kTaV � Ta


;

where V is the cardiac transmembrane potential.
We now apply the theory developed above to derive the same

mechanical assumptions of the original model. To achieve this, we
suppose that the total energy is given by

jðF;HÞ ¼ jPðFÞ þ TmaxH2J;

where J ¼ det F. Then, using (21) and assuming material incom-
pressibility J ¼ 1, the resulting total stress is

P ¼ PP þ TmaxH2F�T ;

and it coincides with that in Nash and Panfilov (2004). The dy-
namics of the mechanical activation then follows from (22):

m _H ¼ bðVÞ � 2TmaxH:

Choosing b(V) ¼ aV with a ¼ 2.279 Tmax kPa and m ¼ 1000 kPa,
we obtain the evolution shown in Fig. 3.

We stress that the form of the total energy used in Nash and
Panfilov (2004) does not satisfy the so-called unconditionally
strong ellipticity condition (see e.g. Ambrosi and Pezzuto (2011)).
Different evolution laws for the active tension could be obtained by
assuming that jA(F) is a function of the fiber elongation I4,f. These



Fig. 3. Active stress evolution according to (22) with b(V) ¼ 2.279TmaxV kPa and
m ¼ 1000 kPa.
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should follow from the assumptions on the tensorial form of the
active stress, as for example in Dal et al. (2013); Eriksson et al.
(2013).
3. Coupling with cardiac electrophysiology

3.1. Macroscopic electromechanical coupling

Under physiological conditions, electrical activation of cardiac
cells precedes mechanical contraction of the muscle. In addition,
calcium dynamics are tightly related to the action of other ionic
concentrations and currents through the cellular membrane. To
account for the electrophysiological activity in cardiac tissue we
incorporate the classical monodomain equations endowedwith the
model for human epicardial action potential introduced in Bueno-
Orovio et al. (2008). The unknowns are the transmembrane po-
tential V and all major ion channels and calcium dynamics are
encoded in a vectorw of gating variables. The system,written in the
reference configuration U0, reads

CmcmvtV � V$
	
F�1GF�TVV


þ cmIðV ;wÞ ¼ Istim;

dtw � rðV ;wÞ ¼ 0;
(23)

where I,r are the reaction terms linkingmacroscopic propagation of
potential and cellular dynamics, specified in Bueno-Orovio et al.
(2008), Istim is an externally applied source, Cm is the specific
membrane capacitance per unit area, cm is the surface-to-volume
ratio of the cardiomyocytes, and G is a transversely isotropic con-
ductivity tensor representing different myocardial propagation
velocities sf, ss in the directions f0 and s0, respectively. From e.g.
(19) it is evident that the electrical activity influences directly the
mechanical activation: the variable c in the activation model is set
to be the slow inward current of the ionic model (Bueno-Orovio
et al., 2008). A basic two-way coupling is achieved by assuming
that the electrophysiology is affected by the macroscopic tissue
deformation through the geometrical nonlinearity arising from the
change of reference (F appears in the diffusion term of (23)). Other
effects, such as stretch activated currents, do not play any major
role in the cases studied herein and are therefore neglected.
3.2. Rule-based fiber and sheetlet directions

To test the model on ventricular geometries we need data of
fibers and sheetlet directions. While fiber fields taken fromMRI are
now commonly available, sheetlet orientation data is far more rare
and therefore many heart models discard them. Several recent
studies on computational cardiac modeling have detailed compu-
tational strategies to reconstruct fiber and sheetlet fields based on
geometrical rules (Göktepe et al., 2013). We propose here a modi-
fied version of the algorithm studied in (Wong and Kuhl, 2013) that
allows for an additional reduction in computational cost. The
underlying assumption is based on approximating the sheetlet di-
rections to be “radial”, curl-free and divergence-free using a
Helmholtz decomposition (see e.g. (Dubrovin et al., 1992)). Let us
assume that V^s0 ¼ 0. Then, there exists a scalar potential f such
that s0 ¼ Vf. Therefore, to find the sheetlet field, we need to find
the potential f, which, taking the divergence of s0, satisfies a Lap-
lace equation supplemented with a set of boundary conditions

Df ¼ 0 in U0;

f ¼ g on GD;

vf
vn ¼ h on GN :

(24)

Typically h¼ 0 on the base, while g¼ 0 on the endocardium, and
g ¼ 1 on the epicardium. After solving the potential problem with
the FEM we use the patch gradient recovery method to find
s0 ¼ Vf=jjVfjj. Let k be the vector parallel to the ventricular
centerline and pointing apex-to-base. Then its projection kp on the
plane orthogonal to s0 is given by

kp ¼ k� ðk,s0Þs0:
An initial fiber field (with zero component along the centerline)

is defined by ~f0 ¼ s0^ðkp=
��kp

��Þ. We then create a rotation matrix
Rs0 ðfÞ which describes the rotation of the fiber field around the s0
-axis. Supposing a one-to-one correspondence between the rota-
tion angle and the potential f, we end up with

f 0 ¼ Rs0ðfÞ~f 0: (25)

Given the rotation angle q ¼ q(f), the rotation matrix Rs0 ðqÞ is
found through the Rodrigues’ rotation formula

Rs0ðqÞ ¼ Iþ sin ðqÞ½s0�� þ 2sin2 ðq=2Þ½s05s0 � I�;

where [s0]� is the cross-product matrix defined as

½s0�� ¼
0@ 0 �s0;z s0;y

s0;z 0 �s0;x
�s0;y s0;x 0

1A:

We will suppose the following linear (Nagler et al., 2013) rela-
tionship between the potential f and the rotation angle q

q ¼ 	
qepi � qendo



fþ qendo; (26)

where qepi and qendo are the possible values of the angle rotation on
the epicardium and on the endocardium, respectively. The proce-
dure to create the rule-based fiber field is outlined in Algorithm 1
(see also Fig. 4).

Algorithm 1. Rule-based sheetlet and fiber directions

1: Set qepi, qendo
2: Set the ventricular centerline vector k,
3: Impose BC in (24), e.g. fj

epi
¼ 0, fjendo ¼ 1,

4: Find 4 solving problem (24),
5: Compute sheetlet direction as s0 ¼ Vf=kVfk,
6: Compute the projection of kp ¼ k� ðk; s0Þs0,
7: Compute the flat fiber field ~f0 ¼ s0^kp=

��kp
��,

8: Rotate the fiber field using (25) and (26).
4. Numerical tests

All simulations presented in this section have been imple-
mented in the framework of the LGPL parallel finite element library
LifeV (http://www.lifev.org). The LifeV code for the



Fig. 4. Steps to create the sheetlets and fiber directions. Referring to steps 4e8 in Algorithm 1, following the arrows: step 4) solution of problem (24); step 5) sheetlet direction s0;
step 6) projection vector kp=

��kp
�� ; step 7) flat fiber field ~f 0 ; step 8) fiber field f0.
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electromechanical coupling is currently available under request.
Simulations were run on 1e16 nodes of the cluster Bellatrix at the
EPF Lausanne (each with 2 Sandy Bridge processors running at
2.2 GHz, with 8 cores each, 32 GB of RAM, Infiniband QDR 2:1
connectivity, and GPFS filesystem). For reference, model parame-
ters are described in Table 2 at page 14. Tetrahedral meshes were
generated with the mesh manipulator GMSH (http://www.geuz.
org/gmsh).
4.1. Discretization and algorithmic details

Piecewise continuous linear finite elements were employed for
the approximation of all electromechanical fields. An operator-
splitting method is used to solve separately reaction and diffusion
parts of (23). Time integration of the reaction step is performed
with a locally varying third-order Rosenbrock method (see e.g.
Quarteroni et al. (2007)) with implicit treatment of linear terms,
whereas the diffusion step is advanced in time with an implicit
Euler scheme. The resulting linear systems are solved using a
conjugate gradient method preconditioned by a four-level algebraic
multigrid method. Insulation boundary conditions are applied to
the electric potential, ionic variables and activation field. Initial data
will be taken as in Table 2. The electromechanical system is solved
using the assumption of weakly coupling between electrophysi-
ology and mechanics. Different temporal resolutions are employed
for each sub-problem: we subiterate the electrophysiology and the
Table 2
Typical values for model parameters.

Ionic cell model parameters
u0 ¼ 0, uu ¼ 1.58, qv ¼ 0.3, qw ¼ 0.015, q�v ¼ 0:015, qo ¼ 0.006, s�v1 ¼ 60,

s�v2 ¼ 1150, sþv ¼ 1:4506, s�w1 ¼ 70, s�w2 ¼ 20, k�w ¼ 65, u�w ¼ 0:03,
sþw ¼ 280, sfi ¼ 0.11, so1 ¼ 6, so2 ¼ 6, sso1 ¼ 43, sso2 ¼ 0.2, kso ¼ 2, uso ¼ 0.65,
ss1 ¼ 2.7342, ss2 ¼ 3, ks ¼ 2.0994, ssi ¼ 2.8723, swN ¼ 0:07, w�

N ¼ 0:94
Monodomain model parameters
Cm ¼ 1mF/cm2, c ¼ 1400 cm�1, sf ¼ 1.3341 kU�1 cm�1, ss ¼ 0.176 kU�1 cm�1

Electrophysiology initial data
w0 ¼ V ¼ 0, w1 ¼ 1.0, w2 ¼ 1.0, w3 ¼ 0.02155
Force-length relationship parameters
c0 ¼ �4333.618335582119, c1 ¼ 2570.395355352195, c2 ¼ 1329.53611689133,

c3 ¼ 104.943770305116, d1 ¼ �2051.827278991976,
d2 ¼ 302.216784558222, d3 ¼ 218.375174229422, l0 ¼ 1.95 mm,
SLmin ¼ 1.7 mm, SLmax ¼ 2.6 mm

Active strain parameters
a ¼ �4 mM�2, bmA ¼ 5000 s mM�2, c0 ¼ 0.2155 mM, k¼4
Passive material law parameters
a¼ 0.333 kPa, af¼ 18.535 kPa, as¼ 2.564 kPa, afs¼ 0.417, K¼ 350 kPa, b¼ 9.242,

bf ¼ 15.972, bs ¼ 10.446, bfs ¼ 11.602
activation part, several times between every mechanical update. In
particular, setting se and sm the time step used for the electro-
physiological problem and the timestep for the mechanical prob-
lem, respectively, we follow Algorithm 2 (See also Nobile et al.,
2012). Near incompressibility of the tissue is enforced through
the standard additive decomposition of the strain energy density
into a volumetric and isochoric part (Ogden, 1984). The bulk
modulus K for cardiac tissue is set to 350 kPa. To validate our nu-
merical schemes and computational solver we performed a
convergence test with respect to spatial discretization using
2k � 2k � 2k elements meshes with k ¼ 1,.,5. The main errors arise
from the electrophysiology which requires a very fine mesh. An
efficient strategy can be set up using different spatial resolutions for
the electrical and mechanical systems. However, in the present
work we use the same spatial resolution for both physical pro-
cesses. The results shown for the first two test cases and for the
third ventricular test were carried out using tetrahedral meshes of
3072 and 28416 elements, respectively. In the fourth test case, the
mesh for the human ventricles consists of 750k elements.

Algorithm 2. e Weak electromechanical coupling.

http://www.geuz.org/gmsh
http://www.geuz.org/gmsh
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4.2. Active strain evolution algorithm

From the computational point of view, when solving (19) special
care is required in the evaluation of the consistency term 2I4;f jc¼c0 .
This entails to record the initial configuration where the chemical
quantity n is still at the resting value. To avoid this issue, and for
sake of efficiency, we use a Taylor expansion of the term vjC/vFA. In
fact, denoting with

F
�
u;gf

�
¼ 2I4;f =

�
1þ gf

�3
;

we perform a Taylor series expansion around gf ¼ 0 as

F
�
u;gf

�
¼
XN
j¼0

FðjÞðu;0Þ
j!

gjf ¼
XN
j¼0

ð�1Þjðjþ 1Þðjþ 2ÞI4;fgjf :

(27)

Simple computations show that the series (27) has radius of
convergence equal to 1 and therefore we can use it to approximate
F (u,gf) since we expect gf ˛ [�0.15,0]. Noting also that
Fðu;0Þ ¼ 2I4;f

���
c¼c0

allows us to write an approximated version of
(19) in the form

mA _gf ¼ FA þ
XM
j¼1

ð�1Þjðjþ 1Þðjþ 2ÞI4;fgjf ;

wherewe truncated the series at theM� th term and kept the same
notation for the approximated variables, for simplicity. The linear
case, for whichM¼ 1, is not appropriate to represent (19) for values
of gf smaller than�0.01. In the range [�0.15,0] the optimal value for
M is found to be 5. For the reasons presented above, in the following
numerical tests we will use the modified evolution law

mA _gf ¼ FA þ
X5
j¼1

ð�1Þjðjþ 1Þðjþ 2ÞI4;fgjf ; (28)

which allows computational savings and easier calculations.

4.3. Test 1: Quasi compatible deformations

In this first test case we examine the differences between the
typical transversely isotropic (see e.g. (Eriksson et al., 2013;
Stålhand et al., 2011; Göktepe and Kuhl, 2010)) and the ortho-
tropic mechanical activation proposed herein. As computational
domain we consider the cube U0 ¼ [0,1] � [0,1] � [0,1] where the
excitation front is initiated on one face, that is,
V(t0) ¼ c[0,0.05] � [0,1] � [0,1]. The fiber field is aligned in the Y� axis
direction while the sheetlet field is aligned with the X� axis. Since
the propagation of the depolarization front deriving from (23) is
much faster than the increase of mechanical activation, the variable
gf will be almost constant in U0. Therefore, using proper boundary
conditions for the mechanical problem the system will assume a
stress-free compatible configuration. Namely, stress-free and
symmetry boundary condition are imposed as follows: Pn ¼ 0 on
GN and u,n ¼ 0 on GD, where GD ¼{0} � [0,1] � [0,1]W
[0,1] � {0} � [0,1]W[0,1] � [0,1] � {0} and GN ¼ vU0 � GD. In Fig. 5
(top row) we show the deformed configuration at maximum
contraction for the transversely isotropic case, with gn ¼ gs (left)
and for the orthotropic case gn ¼ kgf (center), where we used the
orthotropy parameter k ¼ 4. Fibers and sheetlets directions are
shown in the frame of reference {f0,s0,n0} at the top right. For both
cases the average value of gf in U0 and the maximum displacement
in the sheetlet direction are displayed in Fig. 5 (bottom row). For
both transversely isotropic and orthotropic mechanical activation,
theminimumvalue of macroscopic (andmicroscopic) shortening in
the fiber direction gf reached is about �0.06, in agreement with
experimental data found in Rademakers et al. (1994). On the other
hand the transversely isotropic case clearly fails to capture the very
large strains in the sheetlet direction, with 3% of thickening against
the 37% for the orthotropic case.

The small amount of thickening in the cross-fiber direction
suggests that the transversely isotropic microscopical shortening is
not sufficient to explain the large deformations taking place at the
organ level. This result is sufficient to drop the transversely
isotropic hypothesis and consider a more general orthotropic me-
chanical activation hypothesis (9) that is able to capture de-
formations also at macroscopic level.

4.4. Test 2: transmural slab

In the second test case we examine the role of diastolic preload
and of the forceelength relationship (20) introduced in (28). Once
again we consider the slab U0 ¼ [0,1] � [0,1] � [0,1], representative
of a small piece of transmural tissue, and we initiate the depolari-
zation wave on the endocardial surface Gendo ¼ {0} � [0,1] � [0,1],
i.e., V(t0)¼ c[0,0.05] � [0,1]�[0,1]. By Gepi ¼ {1}� [0,1]� [0,1] we denote
the epicardial surface. We assume that the sheetlet direction is
orthogonal to both Gendo and Gepi, and therefore parallel to the X�
axis: s0 ¼ [1, 0, 0]T. A fiber rotation angle between Gendo and Gepi in
the X� axis is considered and described by the relation q ¼ p/
3 � (2p/3)X. We define, in this way, f0 ¼ [0, sin q, cos q]T. Boundary
conditions have been set as follows: pressure condition on the
endocardial surface, that is Pn¼ pn, where p is the preload pressure,
on Gendo; fixed point condition in the center of the epicardial sur-
face, to prevent rigid translations, that is u ¼ 0 for
(X,Y,Z) ¼ (1,0.5,0.5); fixed epicardial normal displacement, u,n ¼ 0
on Gepi; stress free conditions (Pn ¼ 0) are enforced elsewhere.

Diastolic preload was chosen (according to the values reported
in Eriksson et al. (2013); Klingensmith et al. (2008)) to range be-
tween 4 mmHg and 20 mmHg. In particular we took 5 steps of
4mmHg as shown in Fig. 6 (bottom left). The higher the preload the
greater the wall thickening, thanks to the action of the forcee
length relationship. Fig. 6 shows that this increase is not linear.
When the preload is 20 mmHg, then the initial fiber elongation
reached the optimal value in the forceelength relationship.
Therefore we expect a reduced contractility for a preload higher
than 20mmHg. Note, on the other hand, that the nonlinearity of the
passive structural constitutive law (10) and the high stiffness in the
fiber direction prevent excessive stretching.

In Fig. 6 we show the evolution of the average value of the
macroscopic variables of gf, gs and gn and the wall thickening,
defined as the mean distance between the endocardial and the
epicardial surfaces Gendo and Gepi. To achieve a wall thickening of
more than 30% the value of the orthotropic parameter was set to
k¼ 4. The model parameters for the evolution of gf are set to: active
viscosity coefficient bh ¼ 5000s mM�2 ; active force parameter
a ¼ 4 mM�2, normalized diastolic chemical species n0 ¼ 0.2155 mM.

4.5. Test 3: left ventricle contraction

Several indicators have been measured to characterize the left
ventricular function. Our model assumptions are focused in
capturingwall thickening. To validate ourmodel, on the other hand,
we now consider other indicators: the apex-to-base longitudinal
shortening, the basal twist angle and the apical twist angle. Usually,
when one of those indicators is not well captured, the poor
knowledge of the fiber field or the lack of data about collagen
sheetlet direction are blamed. For this reason, on the top of an



Fig. 5. Test 1: Transversely isotropic (top left) and orthotropic (top center) activation. The evolution of gf (bottom left) is similar for both types of activations, but the displacement in
the sheetlet direction (bottom center) is very small in the transversely isotropic case.

Fig. 6. Test 2: The transmural cube is preloaded with an endocardial diastolic pressure which elongates the fibers. The direct introduction of the forceelength relationship (20) in
(28) leads to an increase wall thickening when the preload is increased. Top left: initial configuration (grid), fiber field(arrows) for 16 mmHg of preload and wall thickening at
maximum contraction. The displacement magnitude is computed with respect to the preloaded configuration. Top center and top right: macroscopic active strain in sheetlet
direction gs and wall thickening for different values of initial preload. Bottom center and bottom right: macroscopic fiber and cross-fiber strains gf and gn for different values of
initial preload.
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idealized ventricular geometry represented by a truncated ellip-
soid, we constructed four fiber fields using Algorithm 1. We aim in
this way at a better understanding of the role of the fiber direction.
The first fiber field used the values indicated in Colli Franzone et al.
(2008), with non-symmetric endocardial and epicardial angles
(qepi ¼ �45�, qendo ¼ þ75�). The other three fields have been con-
structed starting from the classical values (qepi ¼ �60�,
qendo ¼ þ60�) with 10� of difference, namely (qepi ¼ �50�,
qendo ¼ þ50�) and (qepi ¼ �70�, qendo ¼ þ70�). The idealized
ventricle is geometrically described as a truncated ellipsoid. The
longitudinal endocardial radius is 6.4 cm long whereas the minor
axis is 2.8 cm long. The thickness of the wall in the reference
configuration is set to 1.5 cm at the base and 0.6 cm at the apex. The
depolarization wave is initiated on the full endocardium. On the
epicardium and on the basal cut, we enforced Robin boundary
conditions, P,n ¼ ku, with k ¼ 3.75 mmHg cm�1. On the endocar-
dial surface we impose an initial preload of 15 mmHg. Pressure is
increased during contraction but no pressure-volume relation is
imposed.

In Fig. 7 we show the evolution of the aforementioned in-
dicators. The ventricular configuration is shown at the top left, over
the initial state (grid). From this analysis we see that the influence
of the fiber direction onwall thickening (top center) is small, as the
enlargement in all cases is between 37 and 41%. Longitudinal
shortening (top right) instead, is influenced by the fiber angle. In
fact, since the greater shortenings take place in the cross-fiber di-
rection, then, smaller (in absolute value) angles will give rise to
increased longitudinal shortening. Epicardial twist angles
measured at the base and at the apex (bottom center and bottom
apex) are strongly depending on the fiber direction. In fact, the peak
Fig. 7. Test 3: The idealized ventricle is preloaded with 15 mmHg. Afterward the depolariz
motion, the ventricle is not fixed anywhere, which leads to a substantial longitudinal (apex-t
the base and at the apex of the ventricle strongly depend on the fiber orientation, while t
urations. Top center: amount of wall thickening measured at 2 cm below the base for diffe
angles. Bottom center: Epicardial twist angle at a point at the base for different fiber angle
rotation angle varies up to 50% in the considered cases. Results
shown in Fig. 7 are in general agreement with experimental results
(MaxIver, 2012; Reyhan et al., 2013). Even if basal twist angle is
underestimated, which may be due to the high Robin coefficient
imposed in the boundary conditions, we note that the twist and
counter-twist behavior (Lorenz et al., 2000) are captured.

Apart from fiber orientation, geometrical aspectsmay also play a
significant role, especially regarding twist angles. We used random
free-form deformations to modify the idealized ventricular geom-
etry and obtained three non-idealized left ventricles. On the
deformed ventricles is difficult to find a good and consistent
quantitative measure of twist angles. A qualitative way to note the
increased twist is the break of symmetry of the displacement field
of the idealized ventricle (Fig. 8(1-2-3-4)). To outline the geomet-
rical effects, in all geometries, we used a fiber field such that
(qepi ¼ �60�,qendo ¼ þ60�). In Fig. 8 we show snapshots of the
systolic phase. On the top lines we notice the large wall thickening
(40%), while in the bottom line we appreciate longitudinal short-
ening. The longitudinal shortening in all cases was in the range
18.5 	 1.5%. A series of videos of these simulations is available at
CMCS official website (http://cmcs.epfl.ch/applications/heart).

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.euromechsol.2013.10.009.

4.6. Test 4: human heart

As a final test case, we consider the human heart, where our
objective is to show that the proposed model is consistent also in
more realistic settings. An open-source biventricular geometry
segmented from CT scan data and a tetrahedral mesh consisting of
ation wave is initiated on the full endocardium. To avoid excessive constraints on the
o-base) shortening. The amount of longitudinal shortening, as well as the twist angle at
he amount of wall thickening does not. Top left: preloaded (grid) and systolic config-
rent fiber angles. Top right: longitudinal (apex-to-base) shortening for different fiber
s. Bottom right: Epicardial twist angle at a point at the apex for different fiber angles.

http://cmcs.epfl.ch/applications/heart
http://dx.doi.org/10.1016/j.euromechsol.2013.10.009


Fig. 8. Test 3: Snapshots of the systolic phase on the idealized ventricle (1) and with non-symmetric ventricular geometries (2,3,4). The epi-endocardial fiber angle is set to
be �60� þ 60� . Break of geometrical symmetry leads to higher rotation angles. Refer to Fig. 7 for the colorbar. First rows: wall thickening; second rows: longitudinal shortening.
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250k vertices and 1M elements (Rousseau, 2010) was modified to
handle elasticity boundary value problems. On the final mesh
consisting of 750k elements we employed Algorithm 1 to construct
a rule-based sheet and fiber field. The initial electrical stimulus has
been applied in the apical region of the right ventricle endocardium
and in a central region of the left ventricle endocardium. All the
model parameters and boundary conditions have been set as in the
previous test case. We show in Fig. 9 the result of the full electro-
mechanical coupling on the human heart: the generated fiber field
on the left; the initial preloaded configuration, with 15 mmHg for
the left ventricle and 8 mmHg for the right ventricle, in the center;
the predicted systolic configuration on the right. Themodel worked
”out of the box” in this test recovering roughly 40% of wall thick-
ening and 20% of longitudinal shortening. Even if a fine tuning of
the parameters as well as precise information about the fiber and
sheet fields would be necessary to represent patient-specific car-
diac cycles, this biventricular test case prove the potential of the
model proposed herein. A video of the full simulation is available as
online supplementary material.
Fig. 9. Test 4: a rule-based fiber field has been created (left) for a human ventricular geome
pressure of 8 mmHg and 15 mmHg, respectively. Systolic configuration of the human vent
5. Discussion

Experiments on isolated cardiomyocytes indicate that the cells
contract mainly along their longitudinal axis. Assuming volume
conservation of individual cells, this means that cells undergoing
uni-axial contraction must expand in the two orthogonal di-
rections. This has been used to justify active contraction models of
cardiomyocytes, where the contribution from the active stress/
strain acts mainly in the mean fiber direction in a transversely
isotropic way. The orthotropic structure of the myocardium,
dictated by the local fiber and sheetlet directions, is usually only
accounted for in the passive material response. However, there is
no reason to assume that the correct strategy for upscaling is to
assume that the behavior at the macroscopic level of cardiac tissue
is directly inherited from the microscopic level of individual cells.
The microstructure of the myocardium is complicated and is
comprised not only of fibers and fiber sheetlets, but also of the
fibrous extracellular collagen matrix making a formal homogeni-
zation difficult. The structure of the sheetlets may influence the
try (Rousseau, 2010). The left and right ventricles have been preloaded (center) with a
ricles (right).
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macroscopic behavior just as much as the fiber orientation, and this
fact is not captured by a transversely isotropic contraction model.
Many models found in the literature consider active stress/strain
only in the fiber directions, and, as a result, produce simulations
with rather unrealistic contraction patterns with reduced wall
thickening during diastole and little to no apex-to-base shortening
(or in some cases even lengthening, resulting in squeezed and
elongated ventricle shapes). The inaccurate prescription of fiber
and sheetlet directions is sometimes given as the reason for this,
and it is postulated that if only more accurate structural informa-
tion about fiber sheetlets in the myocardium was available, the
results would be more in line with what is observed in in vivo
hearts. Instead, we argue that it is important to modify the active
constitutive law of the mechanical activation to take into account
the macro-structurally induced transversal anisotropy.

Following Stålhand et al., 2008, 2011, 2013) we have performed
a thermodynamically consistent derivation of the active mechanics
of contracting cardiac tissue that is valid for both active strain and
active stress basedmodels.We have shown that, in the latter case, it
is possible to derive simple phenomenological laws, similar to the
commonly used model of Nash and Panfilov (Nash and Panfilov,
2004), by introducing an additional internal state variable which
links the biochemical reactions to the macroscopic stress. In the
active strain formulation, the internal state variable linking the
macroscopic and themicroscopic is represented by the “active” part
of the deformation gradient tensor. To bridge the gap between force
generation at the microscopic level and tissue contraction at the
macroscopic level we have presented a phenomenological model
for transversely anisotropic active strain -driven contraction
through a decomposition of the total active deformation gradient
into a microscopic deformation gradient and a macroscopic defor-
mation gradient.

Following this idea, we propose a simple geometrical mecha-
nism that can explain the observed cross-fiber shortening. Our
main assumption is that the cardiomyocytes are surrounded by an
inextensible framework of collagen fibers that constrains their
macroscopic deformation in the cross-fiber direction, similarly to
the hypothesis made in Bourdarias et al. (2009). Wall thickening is
then achieved by imposing volume conservation at the macro-
scopic level. This simple geometrical model leads, after lineariza-
tion, to assume that the macroscopic deformation in the cross-fiber
direction is proportional to the microscopic deformation in the fi-
ber direction. This fact is also confirmed by experimentally
observed strain measurements and captures the effect due to the
fiber sheetlets sliding against each other leading to about 40% of
wall thickening. In this work the proportionality constant is fixed e

its correct value is the subject of additional study both from an
experimental and a theoretical point-of-view. In reality, the cross-
fiber strains are roughly three/four times larger than the strains
in the fiber direction when measured at the endocardium, but
diminish as one moves through the transmural thickness to the
epicardium (Rademakers et al., 1994). Our model is tested using
simulations on a simple cube, on idealized left ventricular ellipsoids
as well as on more realistic human biventricular geometries with
fiber and sheetlet orientations. In the resulting simulations three
important phenomena are captured: the wall thickening up to 40%
during peak-systole, the axis-to-base shortening of around 15%, and
the ventricular torsion ranging from �1� at the base to þ8� at the
apex. Due to the explicit introduction of a forceelength relationship
inside the active force term along the fiber direction, the model also
reproduces well the Frank-Starling effect as the preload inside the
ventricle is increased.

A limitation of our model is that we have applied a phenome-
nological model linking the intracellular calcium to the active force
generation, whereas it is standard to use a crossbridge kinetics
model that more accurately predicts the prolonged force generated
by the binding of myosin crossbridges with the actin sites. Most of
the models we use are phenomenological in nature but can be
calibrated to match typical values in the human species. For some
models no human data is available, such as the forceelength rela-
tionship, which is adapted from experiments with felines. We do
not consider the effect of stretch-activated channels, nor perform a
precise calibration of the ventricular pressure to match a desired
pressure-volume curve. Including these aspects would make the
simulations more physiological, but even with such a phenome-
nological framework we have shown that realistic contraction
patterns of the ventricle can be obtained with relatively simple
models once the constitutive law of the mechanical activation
model is properly chosen to account for the macroscopic
anisotropy.
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