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Active strain and activation models in cardiac electromechanics
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2 Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
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We present a model for mechanical activation of the cardiac tissue depending on the evolution of the transmembrane electrical
potential and certain gating/ionic variables that are available in most of electrophysiological descriptions of the cardiac mem-
brane. The basic idea consists in adding to the chosen ionic model one ordinary differential equation for the kinetics of the
mechanical activation function. A relevant example illustrates the desired properties of the proposed model, such as delayed
muscle contraction and correct magnitude of the muscle fibers’ shortening.
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1 Introduction

The modeling of the heart is essential to better understand several pathologies arising from cardiovascular disorders that are
known to be the leading cause of deaths in industrialized countries [3]. We focus our attention on two important elements in
cardiac function: the electrophysiological phenomena driving the propagation of electrical potentials through the tissue, and
its interaction with the large deformations of the myocardium.

2 The active strain formulation for the electromechanical coupling

In the active strain formulation, a decomposition of the deformation gradient is performed into a passive and an active con-
tribution F = FpFa [1]. Moreover, it is assumed that the mechanical activation depends on the electrical potential through
the function γ, which acts on the active factor of the deformation gradient defined as Fa = I + γn⊗ n + γss⊗ s, where n
and s denote the local direction of the fibers and sheets, respectively (Fig. 1). Since the cardiac cells are composed mainly of
water, we impose the incompressibility condition det(Fa) = 1 which implies in particular, that γs = −γ/(1+γ). A material-
dependent energy function W will determine the specific constitutive relations to use. In this note we restrict ourselves to
Neo-Hookean materials. The effect of the mechanical deformation is included in the equations that drive the electrophysiol-
ogy by rewriting the balances from Eulerian to Lagrangian coordinates. Let Ω ⊂ RN , N = 2, 3 be a bounded body in its
reference undeformed configuration, and let D denote a tensor of constant electrical conductivities. Putting all together, the
modified equations accounting for the coupling between active finite elasticity and the monodomain equations read as follows:
Find v,u, p (transmembrane potential, displacements, and pressure, respectively) such that

−∇ ·
(
∂W(u, p)

∂F

)
= 0 in Ω,

detF = 1 in Ω,

∂tv −∇ ·
(
F−1DF−T∇v

)
= Iion(v,w) in Ω× (0, T ),

∂tw −H(v,w) = 0 in Ω× (0, T ),

∂tγ = G(v,w, γ) in Ω× (0, T ).

(2.1)

3 Activation models and numerical examples

The ODE system modeling the kinetics of the membrane and of the activation γ is given by

∂tv = Iion(v,w), ∂tw = H(v,w), ∂tγ = G(v,w, γ). (3.1)

For phenomenological description of the membrane kinetics according to the Rogers-McCulloch model [6], system (3.1) reads

∂tv = −c1v(v − a)(v − 1) + c2vw, ∂tw = b(v − w), ∂tγ = dRM
1 (βw − dRM

2 γ),

where the parameters are chosen as in Table 1. The parameter β = 0.3 is included to model the maximum change of length
experimented by the cardiac fibers in a normal heartbeat. Fig. 2 depicts the time evolution for this system computed on a
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120 Section 2: Biomechanics

Table 1 Values of membrane and activation parameters.

a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1, dRM
1 = 0.025, dRM

2 = 0.42, β = −0.3, dLR
1 = 2.2, dLR

2 = 0.005.

Fig. 1 Fibrous architecture of the car-
diac tissue.
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Fig. 2 Rogers-McCulloch model. Evolution
of the action potential, recovery variable, and
activation function in absolute value.
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Fig. 3 Luo-Rudy model. Evolution of the ac-
tion potential, rescaled calcium concentration,
and rescaled activation function.

single cell. Analogously, in Fig. 3 we present the kinetics for the Luo-Rudy (phase I) model [2], which are obtained with
the following specification for G in (3.1): ∂tγ = dLR

1 (β[Ca]+i − dLR
2 γ). Here the amplitudes of both calcium and activation

have been rescaled for visualization purposes. We see a qualitative accordance with the results provided in e.g. [5, Fig. 9].
Finally, in Fig. 4 we present a finite element simulation of (2.1) for a Neo-Hookean material with elastic modulus µ1 = 4. The
computational meshes are a biventricular geometry consisting of 13’638 nodes forming 69’544 tetrahedra, and a truncated
ellipsoid of 29’560 vertices and 155’770 elements. The time step is set to ∆t = 0.5 ms for the Rogers-McCulloch and
∆t = 0.05 ms for the Luo-Rudy examples. As in [4], Taylor-Hood finite elements are employed for the spatial discretization.

Acknowledgements SR acknowledges support by the IST-EPFL Joint Doctoral Initiative, RR and AQ acknowledge financial support by
the European Research Council through the advanced grant ERC-2008-AdG 227058.

Fig. 4 Snapshots of the evolution of the transmembrane potential and corresponding slight movement of the mesh. Rogers-
McCulloch Monodomain electro-mechanic model (top), and Luo-Rudy Monodomain electro-mechanic model (bottom) at time instants
t = 40, 180, 250, 400ms. In each snapshot, the undeformed uncutted domain is represented by a cloud of points.
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