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We are interested in the reliable simulation of the sedimentation of monodisperse
suspensions under the influence of body forces. At the macroscopic level, the complex
interaction between the immiscible fluid and the sedimentation of a compressible phase
may be governed by the Navier–Stokes equations coupled to a nonlinear advection–
diffusion–reaction equation for the local solids concentration. A versatile and effective finite
volume element (FVE) scheme is proposed, whose formulation relies on a stabilized finite
element (FE) method with continuous piecewise linear approximation for velocity, pressure
and concentration. Some numerical simulations in two and three spatial dimensions
illustrate the features of the present FVE method, suggesting their applicability in a wide
range of problems.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Gravitational sedimentation of small particles dispersed in a viscous fluid is a phenomenon widely observed in many en-
gineering applications and natural systems. Such a process, where gravity drives the separation of the suspension into a clear
supernatant liquid and a consolidated sediment, is typically employed in e.g. the solid–liquid separation of suspensions in
mineral processing and wastewater treatment. Historically, many sedimentation models were based on the one-dimensional
sedimentation theory by Kynch [26], which basically consists in describing the solids concentration as a function of ves-
sel depth and time, governed by a scalar, nonlinear hyperbolic conservation law. This prototype model, along with a large
number of tailored variants, have been proven to be accurate enough to represent some specific industrial scenarios such
as clarifying–thickening processes and mixture of polydisperse suspensions (see e.g. [15,17]). Here we are more interested
in multidimensional models that are able to predict some additional effects, such as the direct influence of bulk flow and
boundary conditions. This necessarily entails the solution of the Navier–Stokes equations for the flow field of the mixture,
increasing the complexity of the mathematical description of a strongly coupled system and also making difficult to solve
these equations numerically. We focus our study in the particular case of batch sedimentation in closed channels exhibit-
ing different geometries. The phenomenon of enhanced gravity settling in inclined channels, known as the Boycott effect,
was first reported in [9] in the context of erythrocyte sedimentation. In such a context, the process of settling is enhanced
when the vessel is tilted from the gravity force direction. A theoretical study of this phenomenon was later developed in
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the framework of fluid mechanics [24]. Since many years, the performance of inclined settlers has been described using
the Ponder–Nakamura–Kuroda theory (see [36,35,21]), which does not consider the kinetics of the fluid motion. In [1] the
authors generalized this theory by including a continuity equation for each phase, solid and fluid, an equation to describe
the movement of the suspension as a continuum, and constitutive relationships between the velocities of each phase. In this
context, our goal is to describe at least some components in the overall performance of inclined settlers such as the behav-
ior of the layer of clear fluid along the underside of the inclined wall, which is accelerated upwards, and that enhances the
sedimentation process. Even if multidimensional models of batch sedimentation show that the assumed one-dimensional
nature of the concentration profile holds true in many scenarios, this is not the case for the velocity. Depending on the flow
regime, it can drive the dynamics of the solids concentration and a number of variations in the flow field can be observed.

Besides experimental and theoretical investigations on the physics of sedimentation processes, numerical simulation is
still an important tool to study the behavior of these phenomena. It provides an inexpensive way to try different configu-
rations, nonstandard settings and special conditions for a given process. An important amount of work has been devoted
to the determination of exact and numerical solution of related equations (see e.g. [8] and the references therein). Most of
these contributions focus in the one-dimensional case, where all flow variables are assumed horizontally invariant and, sub-
sequently, flow properties and boundary conditions can be replaced by modifications to the flux function, implying that only
the concentration equation needs to be solved. More general models and solvers in two or three spatial dimensions include
e.g. [31,32,27,13], where numerical studies of batch sedimentation in rectangular channels have been presented. Due to
the nonlinearity and degeneracy of the concentration equation, traditional approaches are often unreliable and nonstandard
techniques such as mixed or hybrid methods are needed. These difficulties also arise in e.g. the modelling of multiphase
flows in porous media (see [4,29,40,37] and the references therein for the implementation and analysis of mixed finite
elements/finite volumes of closely related equations).

Continuity equations can be solved numerically by a large variety of methods, each of them featuring some desirable
properties. For instance, classical finite differences and finite volumes in structured meshes are straightforward to implement
and can allow for conservative approximations, whereas finite element methods are robust and permit natural derivation
of error estimates provided that the solution has enough regularity. Many modifications and combinations of these classical
methods have been proposed to solve flow problems. Here we focus on one of these hybrid strategies, the finite volume
element (FVE) method, that goes back to the early works [18,6]. Several variants of the FVE method are available from
the literature, but irrespective of the specific form at hand, the main idea is that local conservativity is inherited from the
finite volume part of the method, while maintaining the versatility and systematic error analysis in the L2-norm. The FVE
introduced in this paper is a special class of Petrov–Galerkin methods where the trial function spaces are connected with
the test function spaces associated with the dual partition induced by the control volumes [38,28]. In summary, the method
is able to effectively treat arbitrarily complex geometries and unstructured meshes, a variety of boundary conditions, and
features local conservation and front capturing properties.

Works closely related to the present paper include the FVE method applied to Boussinesq equations analyzed in [30],
the hybrid FE–FV scheme for incompressible flows presented in [19] and the ones for shear dependent viscoelastic flows
from [34,46], the FV multiresolution method proposed in [13], and the stabilized FVE formulation for sedimentation prob-
lems in axisymmetric domains introduced in [14]. Our contribution represents an extension to the formers in that we
consider flocculated suspensions (which translates in adding a degenerate diffusive term to the concentration equation),
and to the latter in the sense that we cover the full three-dimensional case, and employ the Navier–Stokes equations for
describing the flow. In addition, we use only one dual mesh, an interior penalty stabilization, and our formulation is based
on piecewise continuous finite elements for all fields. The convergence analysis of (a regularized version of) the problem
will be postponed for a future contribution.

The remainder of this paper is organized as follows. In Section 2 we recall some basic notation and state the model prob-
lem, specifying the conservation equations, constitutive relations, and weak formulation. The fully discrete FVE formulation
is derived in Section 3, and Section 4 contains several numerical results illustrating the physical behavior of the system and
the accuracy and robustness of the proposed FVE method. Concluding remarks and perspectives are collected in Section 5.

2. Preliminaries and statement of the initial–boundary value problem

We will consider the usual notation for Sobolev spaces W m,k(Ω). The norm of Hk(Ω) = W k,2(Ω) is denoted by ‖ · ‖k,Ω

and the subscript Ω will be omitted unless otherwise specified.
The governing equations for the sedimentation–consolidation process in an immiscible fluid can be written as follows

(see e.g. [11,15,22]):

∂tφ + div f (φ, u) = �A(φ), (2.1a)

∂t u + u · ∇u − div
(
μ(φ)ε(u) − λpI

) = g(φ), (2.1b)

λdiv u = 0, in Ω, t > 0. (2.1c)

The problem is defined for a given Lipschitz continuous domain Ω ⊂ R
d (d = 2,3) with polyhedral boundary ∂Ω and

outward pointing normal n. The unknowns are the local solids concentration φ, the local volume-average velocity of the
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mixture u, and the pressure p. Moreover, f is a flux vector which is linear in u but nonlinear in φ, A is a nonlinear,
non-decreasing diffusion function modelling sediment compressibility, μ(φ)ε(u) − λpI is the Cauchy stress tensor, where
ε(u) := 1

2 (∇u + ∇uT) is the strain rate tensor, μ is the concentration-dependent viscosity of the fluid, λ is a positive
parameter, and g is a forcing term describing the local density fluctuations.

The model is complemented by initial data for the concentration φ and the velocity u, and boundary conditions as
follows. The velocity field is fixed u = uD ∈ L2(Γ ) on Γ = ∂Ω . In particular, the vessel is continuously fed through the inflow
boundary Γin with feed suspension, which corresponds to a given profile for the velocity uin, and a feed concentration φin.
On Γout we prescribe a volume underflow velocity uout at which the thickened sediment is removed from the unit and
zero-flux conditions are assumed for φ. On the remaining part of ∂Ω we specify no-slip boundary data for the velocity field
(u = 0), and zero-flux boundary conditions for the concentration.

The flux vector in (2.1a) is given by f (φ, u) = φu + fbk(φ)k, where k is the unit vector pointing in the direction of
gravity and fbk is the Kynch batch flux density function [26] describing hindered settling. This function is assumed to
satisfy fbk(0) = fbk(φmax) = 0 and fbk(φ) > 0 for 0 < φ < φmax, where 0 < φmax � 1 is a maximum concentration [11].
Specifically, we choose [33]

fbk(φ) =
{

u∞φ(1 − φ/φmax)
nMB for 0 < φ < φmax,

0 otherwise,
nMB � 1,

where u∞ > 0 is the settling velocity of a single particle in an unbounded fluid, and we choose the exponent nMB = 2.
The term �A(φ) models sediment compressibility, where the integrated diffusion function A is given by

A(φ) =
φ∫

0

a(s)ds, where a(φ) := fbk(φ)σ ′
e(φ)

(	s − 	f)gφ
.

Here 	s and 	f are the solid and fluid mass densities, respectively, g is the acceleration of gravity, and σ ′
e is the derivative of

effective solid stress function, assumed to satisfy σ ′
e(0) = 0, σ ′

e(φ) > 0 for φ > 0. Since a(0) = a(φmax) = 0 and a(φ) > 0 for
0 < φ < φmax, (2.1a) is a two-point degenerate parabolic PDE, which degenerates into a first-order hyperbolic conservation
law for φ = 0 and φ = φmax.

The forcing term g(φ) = Cφλk in (2.1b) models that the mixture flow is also driven by local fluctuations of φ. Finally,
μ(φ) denotes a generalized local concentration-dependent Newtonian viscosity function, where we assume that there exist
constants μmin,μmax > 0 such that μmin < μ(s) < μmax for s ∈ R+ . A suitable choice is μ(φ) = (1 − φ/φ̃max)

−β , where
φ̃max is a nominal maximum concentration, chosen such that φ̃max > φmax.

After introduction of the functional spaces V = {v ∈ H 1(Ω): v = vD on Γ }, Q = L2
0(Ω), and S := H1(Ω), the variational

formulation for (2.1) reads: Find φ ∈ H1(0, T ; S), u ∈ H1(0, T ;V), p ∈ L2(0, T ; Q ) such that

(φt,ψ)Ω + (u · ∇φ,ψ)Ω − (
fbk(φ)k,∇ψ

)
Ω

− (∇ A(φ),∇ψ
)
Ω

= 0 ∀ψ ∈ S,

(ut, v)Ω + (
(u · ∇)u, v

)
Ω

+ (
μ(φ)ε(u),ε(v)

)
Ω

− λ(p,div v)Ω − (
g(φ), v

)
Ω

= 0 ∀v ∈V,

λ(q,div u)Ω = 0 ∀q ∈ Q , (2.2)

where (·, ·)Ω denotes the inner product in L2(Ω). Existence of weak solutions to (2.2) can be proved after adequate parabolic
regularization of the degenerate diffusion term of the concentration equation, and under some additional assumptions, such
as large enough fluid viscosity (see e.g. [12, Lemma 3]).

3. Approximation by finite volume elements

Throughout the text, Th denotes a primal mesh of closed triangular (or tetrahedral, for d = 3) elements K of diameter hK ,
which is assumed to be locally regular, that is, there exists C > 0 such that

hK

	K
� C, for all K ∈ Th,

where 	K denotes the diameter of the largest ball contained in K . The mesh parameter is h = maxK∈Th {hK }.
A dual mesh Th

� is created by connecting the center of gravity bK of an element K ∈ Th with the midpoints (2D
barycenters) of each face F ⊂ ∂ K , forming four polyhedra Kz for z in the set of vertexes of K (see Fig. 1). Let S = {s j,

j = 1, . . . , Nh} be the set of nodes of Th . To each vertex s j we associate a so-called control volume K �
j consisting of the

union of the polyhedra Ks j sharing the vertex s j .
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Fig. 1. Sketch of elements in the primal mesh Th (in solid lines) and interior node-centered control volumes of the dual mesh Th
� (in dashed lines) on a

local 2D patch (left) and a single primal tetrahedron split into four polyhedra (right).

Let us introduce the following finite dimensional spaces associated with the primal and dual partitions

Vh := {
v ∈ H 1(Ω) ∩ C 0(Ω): v|K ∈ P1(K )d for all K ∈ Th, v|F = uD, if F ⊂ ∂ K lies on ∂Ω

}
,

Q h := {
q ∈ L2

0(Ω) ∩ C0(Ω): q|K ∈ P1(K ) for all K ∈ Th
}
,

Sh := {
s ∈ H1(Ω): s|K ∈ P1(K ) for all K ∈ Th

}
,

V�
h := {

v ∈ L2(Ω): v|K �
j
∈ P0

(
K �

j

)d
for all K �

j ∈ Th
�, v|K �

j
= uD if K �

j is a boundary volume
}
,

S�
h := {

s ∈ L2(Ω): s|K �
j
∈ P0

(
K �

j

)
for all K �

j ∈ Th
�
}
,

where Pm(K ) denotes the space of polynomial functions of total degree s � m defined on the element K . Notice that
Dirichlet data are imposed for u in the definition of Vh and V�

h . In addition, we define the Th
�-piecewise lumping maps

Ph :Vh →V�
h and Qh : Sh → S�

h relating the primal and dual meshes (cf. [38]) by

vh(x) =
Nh∑
j=1

vh(s j)ϕ j(x) �→ Ph vh(x) =
Nh∑
j=1

vh(s j)χ j(x),

Qhψh(x) =
Nh∑
j=1

ψh(s j)χ j(x), x ∈ Ω,

for all vh ∈Vh , ψh ∈ Sh where χ j and χ j are the scalar and vectorial characteristic functions of the control volume K �
j and

{ϕi}i is the canonical FE basis of Vh . For any (w,ψ) ∈ H 1(Ω) × H1(Ω) these operators satisfy the following interpolation
properties

‖w −Ph w‖0 � Ch|w|1, ‖ψ −Qhψ‖0 � Ch|ψ |1.
The discrete problem associated with the variational formulation (2.2) is obtained by multiplying (2.1a) by ψ�

h ∈ S�
h , in-

tegrating by parts over each control volume K �
i ∈ Th

� , multiplying (2.1b) by v�
h ∈ V�

h and integrating by parts over each
K �

i ∈ Th
� , and multiplying (2.1c) by qh ∈ Q h and integrating by parts over each element K ∈ Th . This, along with the defini-

tion of f , gives the Petrov–Galerkin formulation: For 0 < t � T , find φh(t) ∈ Sh, uh(t) ∈ Vh, ph(t) ∈ Q h such that

d

dt

(
φh(t),ψ

�
h

)
Ω

+
Nh∑

i=1

∫
∂ K �

i

(
uh(t) · nK �

i

)
φh(t)ψ

�
h dσ

−
Nh∑

i=1

∫
∂ K �

fbk
(
φh(t)

)
(nK �

i
· k)ψ�

h (si)dσ −
Nh∑

i=1

∫
∂ K �

∂n A
(
φh(t)

)
ψ�

h (si)dσ = 0,
i i
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d

dt

(
uh(t), v�

h

)
Ω

+
Nh∑

i=1

∫
∂ K �

i

(
uh(t) · nK �

i

)(
uh(t) · v�

h(si)
)

dσ

−
Nh∑

i=1

∫
∂ K �

i

μ
(
φh(t)

)
v�

h(si)∂nuh(t)dσ − λ

Nh∑
i=1

∫
∂ K �

i

ph v�
h(si)nK �

i
dσ = (

g
(
φh(t)

)
, v�

h

)
Ω

,

λ

Nh∑
i=1

uh(si, t) ·
∫

∂ K �
i

qhnK �
i

dσ = 0,

for all ψ�
h ∈ S�

h, v�
h ∈ V�

h,qh ∈ Q h . Using Lemma 3.1 from [14] and Lemma 3 from [30] we can state the following space
semi-discrete FVE method: For 0 < t � T , find φh(t) ∈ Sh, uh(t) ∈ Vh, ph(t) ∈ Q h such that

(
φ′

h(t),Qhψh
)
Ω

+ (
uh(t) · ∇φh(t),ψh

)
Ω

− (
fbk(φh)k,∇ψh

)
Ω

− (∇ A(φh),∇ψh
)
Ω

= 0,

d

dt

(
uh(t),Ph vh

)
Ω

+ ((
uh(t) · ∇)

uh(t), vh
)
Ω

+ (
μ

(
φh(t)

)
ε
(
uh(t)

)
,ε(vh)

)
Ω

− λ
(

ph(t),div vh
)
Ω

− (
g
(
φh(t)

)
,Ph vh

)
Ω

= 0,

λ
(
qh,div uh(t)

)
Ω

= 0,

for all ψh ∈ Sh , vh ∈ V0
h = Vh ∩ H 1

0(Ω), qh ∈ Q h . A uniform partition of the interval [0, T ] is done into NT sub-intervals
of size �t and as time integrator we employ a second order backward difference advancing scheme (BDF2, see e.g. [39]).
Only the nonlinear diffusion and concentration-driven part of the flux in the concentration equation are treated explicitly.
This restriction will have an influence in the overall CFL condition, and for the moment we leave further investigation to
a forthcoming study. The remaining nonlinearities (convection and coupling terms) are considered implicit, so that at each
time iteration the solution to the system of nonlinear equations is approximated with a fixed point algorithm. The nonlinear
fully discrete scheme reads:

1

�t

(
φ̃n+1

h ,ψh
)
Ω

+ (
un+1

h · ∇φn+1
h ,ψh

)
Ω

− (
fbk

nk,∇ψh
)
Ω

− (∇ An
h,∇ψh

)
Ω

= 0,

1

�t

(
ũn+1

h , vh
)
Ω

+ ((
un+1

h · ∇)
un+1

h , vh
)
Ω

+ (
μn+1

h ε
(
un+1

h

)
,ε(vh)

)
Ω

− λ
(

pn+1
h ,div vh

)
Ω

− (
gn+1

h ,Ph vh
)
Ω

= 0,

λ
(
qh,div un+1

h

)
Ω

= 0, (3.3)

for all ψh ∈ Sh , vh ∈ V0
h , qh ∈ Q h , where fbk

n := fbk(φ
n
h ), An

h := A(φn
h ), and s̃n+1

h := 3
2 sn+1

h − 2sn
h + 1

2 sn−1
h , for s ∈ {uh, φh}.

Unless a stabilization strategy is applied, the present form of this method fails to satisfy the discrete inf–sup condition
relating Vh and Q h , and the numerical solution is prone to spurious oscillations. Therefore, and following [16], we proceed
to stabilize the formulation by adding to the LHS of the second equation in (3.3) the following (nonlinear, but taken explicit)
extra term arising from a variational multiscale (VMS) analysis

∑
K∈Th

∫
K

τ
(
un

h · ∇)
vh ·

[
1

�t
ũn+1

h + un
h · ∇un+1

h + ∇ph

]
dx,

where τ is an adimensional stabilization parameter depending on h and ‖un
h ⊗ un

h‖0 (see also [25,7]). We found that this
strategy is sufficiently accurate for the cases studied herein.

4. Numerical results

In what follows we study the properties of our FVE method in the framework of coupled systems modelling sedimen-
tation problems. We present a set of numerical examples in two and three dimensions, where we first verify the spatial
and temporal accuracy of the approximations. A fixed point algorithm with a tolerance of 1e−8 is used for the algebraic
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Fig. 2. Experimental convergence rates of the FVE scheme applied to (4.4). Spatial convergence in terms of errors (4.5) computed at T = 1 with a fixed
timestep �t = 0.001 (left), and temporal convergence computed in (0, T ) with a fixed meshsize h = 0.0110485 (right).

system of nonlinear equations and the resulting linear systems are solved with an iterative GMRES method with incomplete
LU preconditioning [41].

4.1. Accuracy assessment

Our first example addresses the experimental spatial and temporal convergence of the FVE scheme applied to the fol-
lowing coupled problem, where the only nonlinearities are the convection terms: Find u, φ, p such that

∂t u + u · ∇u − divε(u) + ∇p − e2φ = f ,

div u = 0,

∂tφ + u · ∇φ − �φ = g. (4.4)

The domain under consideration is the square Ω = (−1,1)2 and forcing terms, along with initial and Dirichlet boundary
conditions for u and φ, are imposed according to the following analytic solutions (see e.g. [5])

u =
(− cos(πx) sin(π y) sin(2t)

sin(πx) cos(π y) sin(2t)

)
, p = −1

4

(
cos(2πx) + cos(2π y)

)
sin2(2t),

φ = cos(πx) cos(π y) sin(2t).

We assess spatial convergence by computing errors at T = 1 on a sequence of nested structured primal meshes, employing
a fixed time step �t = 0.001. Temporal convergence is studied with a sequence of discretizations of (0, T ) with decreasing
time steps, employing a fixed meshsize h = 0.0110485. Errors in different norms are defined as

e0(v) = ∥∥v
(
tNT

) − vh
(
tNT

)∥∥
0,Ω

, e1(v) = ∣∣v
(
tNT

) − vh
(
tNT

)∣∣
1,Ω

,

e0(q) = ∥∥q
(
tNT

) − qh
(
tNT

)∥∥
0,Ω

, e1(ψ) = ∣∣ψ(
tNT

) − ψh
(
tNT

)∣∣
1,Ω

,

E�(v) =
NT∑

n=0

∥∥v
(
tn) − vh

(
tn)∥∥

0,Ω
, E�(ψ) =

NT∑
n=0

∥∥ψ
(
tn) − ψh

(
tn)∥∥

0,Ω
. (4.5)

These quantities are depicted in Fig. 2, where we observe a spatial convergence of order h2 for the L2-norm of u, and
of order h for the other fields in their respective norms, whereas a convergence of order (�t)2 is experienced for all
variables in the L∞(0, t; L2(Ω))-norm. The latter can be expected for non-degenerate cases (natural convection and related
flow problems, see e.g. [23,44]). Under degenerate diffusion, rigorous estimates are not yet available, except only for some
particular situations [45].

4.2. Numerical validation: Differentially heated tall cavity

System (4.4) corresponds to the Boussinesq equations modelling thermal convection processes. Therefore we may also
address the capability of the FVE formulation in recovering some features of the transient flow in a differentially heated
cavity. In this context φ represents the adimensional temperature field. We focus on a domain of aspect ratio 8:1 (see
e.g. [20] and the references therein). We set g = 0, f = 0, �t = 0.01 and δ = √

Pr/Ra, γ = (RaPr)1/2, where Ra = 3.4e5
and Pr = 0.71 are the Rayleigh and Prandtl numbers, respectively. We compare our results with benchmark tests reported
in e.g. [2,20], regarding for instance, temperature profiles at centerlines and velocity–pressure patterns, and a reasonable
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Fig. 3. Differentially heated cavity: FVE approximation of velocities and pressure at t = T (left panels), and comparison of obtained temperature profiles at
y = 4 (right top) and at x = 0.5 (right bottom), to benchmark results (circle and square markers).

qualitative agreement is observed (see Fig. 3). Next, we increase the Rayleigh number by about three orders of magnitude
and compare the behavior of the temperature distribution on four snapshots of the interval (0, T ), with T = 38 (Fig. 4).
Again, the FVE method is able to capture the main features of the temperature in both regimes (see also [10]).

4.3. Boycott effect in an inclined channel

We focus now on the sedimentation of particles described by (2.1), describing in particular the so-called Boycott effect,
where the sedimentation of solid particles from solid–liquid suspension is accelerated mainly because the production rate
of clarified fluid is higher than that of fluid in vertically oriented vessels. This phenomenon is exploited in several industrial
applications. For all remaining cases the diffusion function A vanishes for φ � φc provided that the derivative of the effective
solid stress function satisfies

σ ′
e(φ) =

{
0 for φ � φc,

σ0
α
φc

(
φ
φc

)α−1 otherwise.

We consider an inclined rectangle of height 10 m and width 2 m forming an angle of φ with the x-axis, which we partition
into a primal mesh of 7052 triangular elements and 3527 vertexes (see Fig. 5, left). The following physical parameters
are employed: α = 5, η = 2, β = 2.5, θ = π/3, π/4, π/6, λ = 9000, u∞ = 2.2e−3, φc = 0.07, φmax = 0.95, σ0 = 5.5e−2,
�ρ = 1562, C = 0.01, g = 9.8. The mixture is assumed to be initially homogeneous (i.e. φh(0) = 0.2) and at rest (uh(0) = 0).
We use a timestep of �t = 0.005 s, and we simulate the sedimentation process until t = 500 s. Numerical solutions for this
case are reported in Fig. 6, where independently of the inclination angle, a main vortex is observed at the center of the
channel, whereas the material accumulates at the bottom of the domain and a zone of clear fluid starts to form at the
top.

4.4. Settling in a vessel with inclined walls

A different sedimentation experiment is performed beneath a vessel with downward-facing inclined walls (we refer to
[43] for details on the experimental setting). The computational domain is an isosceles trapezoid of height 4.63 m, base
of 3.4 m and basal angles of 70◦ . The primal mesh consists of 10 904 elements and 5453 nodes. We employ the same
parameters as in the previous section, except for λ = 100. This configuration is also motivated by the Boycott effect and an
acceleration of the settling is expected. We are interested in observing perturbed horizontal profiles in the concentration
field [42], along with relatively high tangential velocities near the boundary layer. The mixture was initially of constant con-
centration φh(0) = 0.2 (or alternatively φh(0) = 0.08) and at rest in the whole vessel. Fig. 7 depicts the state of the process
at t = 100 s, where we confirm the presence of all expected phenomena. In particular we see a more rapid deposition of
the material for clearer mixtures. A timestep of �t = 0.001 s has been used.
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Fig. 4. Differentially heated cavity: FVE approximation of temperature at four different times for Ra = 3.4e5 (top panels) and Ra = 3.0e7 (bottom panels).

Fig. 5. Sketches of primal and dual meshes employed in Sections 4.3 (left), 4.4 (middle) and 4.5 (right).
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Fig. 6. Boycott effect in an inclined channel: FVE approximation of concentrations, pressure and velocities at t = 500 s for inclination angles of θ = π/3
(top), θ = π/4 (middle), and θ = π/6 (bottom).

4.5. Sedimentation–consolidation in a tilted cylinder

The FVE method is now tested in a 3D scenario by considering a cylindrical column of height 10 m and radius 1 m. The
column is inclined so that it forms an angle of θ = π/3 with the y-axis and a primal mesh of 22 235 vertexes and 126 261
tetrahedra is employed (Fig. 5, right). We use a timestep of �t = 0.01 s, and we simulate the sedimentation process until
t = 200 s. All physical parameters are taken as in the previous example and a snapshot of the approximate concentration,
velocities and pressure is displayed in Fig. 8. Consistence with respect to the classical kinematic-wave theory of Kynch [26]
is in general not expected, as discussed in e.g. [11]. However, for a non-inclined cylinder and if we set A ≡ 0 we recover the
classical example of batch sedimentation, where we see that the horizontal interface is located at z = 9.05201 for t = 150 s,
and at z = 7.5812 for t = 375 s. For this particular case we observe an agreement with the theoretical values predicted by
the one-dimensional kinematic theory (z = 9.04 and z = 7.6, respectively, see also [13]).

5. Concluding remarks

We have presented a finite volume element formulation for the coupling of the incompressible Navier–Stokes equations
and a parabolic equation describing the transport and consolidation of sediment in two and three spatial dimensions. The
FVE formulation relies on a stabilized P1 finite element approximation of velocity, pressure and concentration fields. The
method features satisfactory accuracy and stability that we have illustrated with some test cases, where optimal convergence
orders are observed for space and time approximations.

Ongoing extensions of this work include the implementation of a fully implicit scheme with Newton linearization, a
rigorous stability and convergence analysis of the proposed FVE method, the derivation of a mixed formulation for the
coupled problem in terms of concentration, Cauchy stress and velocity; the development of residual-based a posteriori error
indicators and mesh adaptivity that would permit us to accurately capture, for instance, the vorticity field (see e.g. [3]); and
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Fig. 7. Snapshot of the settling of a mixture in a vessel with downward-facing inclined walls, at t = 100 s for an initial concentration of φh(0) = 0.2 (top)
and φh(0) = 0.08 (bottom).

Fig. 8. Boycott effect in a cylinder: FVE approximation of concentrations, pressure and velocities at t = 200 s.
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the construction of efficient solvers and preconditioning strategies that would allow substantial reductions in computational
burden.
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