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We propose a finite element formulation for a coupled elasticity–reaction–diffusion system 
written in a fully Lagrangian form and governing the spatio-temporal interaction of species 
inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model 
for the reaction–diffusion system written in the deformed domain, and a finite element 
method with piecewise linear approximations is employed for its spatial discretization. 
On the other hand, the strain is introduced as mixed variable in the equations of 
elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor 
of the modified reaction–diffusion system written in a deformed domain. The discrete 
mechanical problem yields a mixed finite element scheme based on row-wise Raviart–
Thomas elements for stresses, Brezzi–Douglas–Marini elements for displacements, and 
piecewise constant pressure approximations. The application of the present framework 
in the study of several coupled biological systems on deforming geometries in two and 
three spatial dimensions is discussed, and some illustrative examples are provided and 
extensively analyzed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Scope. We focus our attention in the numerical approximation of the chemical interaction between species concentrations 
and the response of the deformable medium where they react. Such a general framework is relevant to a wide range of 
applications going from molecular to macroscopic biological systems, and including, for instance, chemotaxis [52], organo-
genesis [41], bone remodelling [50,61], swelling of porous materials [38], cardiac electromechanics [31], tumor growth [10], 
force generation in skeletal muscle [15], wound healing [8], collagen network generation [34], tissue engineering [40], and 
many others.

The spatio-temporal dynamics of N species can be represented by a reaction–diffusion system of N equations, and the 
motion of the elastic (or hyper-elastic) medium in its general form, can be typically set in the framework of continuum 
mechanics, and thus be governed by the equations of elastodynamics. Much of the classical work in this particular field 
focuses in specific instances (such as radial growth or uniaxial contraction in simple domains) where it is possible to 
characterize the body motion without resolving the underlying solid mechanics and yielding reaction terms written directly 
in terms of growth rate (see e.g. [14] and the references therein). Nevertheless here we are interested in problems where 
the type of movement is not known a priori and therefore both the deformation and the deformation gradients are needed 
to describe the kinematics of the system: roughly speaking, the displacements/deformations are employed to update the 
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position of the domain, and their gradients appear explicitly in the diffusive terms and are required in the formulation of 
reaction–diffusion systems written in a deformed medium.

Our primary goal is to introduce, implement, and apply a primal-mixed finite element formulation for the discretization 
of the coupled problem, where by primal-mixed we mean that the elasticity equations are set in a mixed form (that is, the 
associated formulation possesses a saddle-point structure involving additional unknowns) whereas the weak formulation of 
the reaction–diffusion sub-problem is written in terms of the primal variables only. From a discretization viewpoint, the 
clear advantages of a mixed formulation are that certain quantities of interest (such as strains or deformation gradients, 
which are needed in particular in the coupling strategy) can be immediately available with no need of further numerical 
differentiation, and that there exists more flexibility in the choice of finite element spaces. Moreover, mixed finite elements 
are the natural candidates for the discretization of the equations of incompressible elasticity, since the formal difficulties 
associated to infinite Lamé coefficients are absent. On the other hand, we are not particularly interested in recovering the 
species concentration fluxes and therefore we concentrate on primal formulations for the reaction–diffusion systems written 
in the deformed domain.

Related work. Traveling wave solutions for somewhat similar systems have been studied in [27]. A mechano-chemical cell 
aggregation model was developed in [57] under the assumption of infinitesimal strains of the medium, that allows to 
establish an equivalence relation between the reference and deformed domains, and that circumvents the difficulties asso-
ciated to unknown body motion or nonlinear inter-configuration mappings. We also mention the finite element formulation 
for organogenesis based on a creeping flow description of the cartilage material presented in [42], and the discontinuous 
Galerkin approximation on moving grids and associated integration factor methods introduced in [62,12] to simulate limb 
pattern formation. Instead of using continuum-mechanics-based formulations, the elastodynamics can be alternatively rep-
resented with discrete models (as the mass-lattice model advanced in [58]). Models of cardiac electromechanics exhibit a 
remarkably similar structure, and several different formulations and solution techniques have been introduced in e.g. [13,
23,31,47]. Other related contributions include Eulerian formulations for wound healing [8], spherical tumor expansion [10], 
level-set and remeshed particle methods for surface and volume deformation [5,33,54], and many other approaches for 
different variants of growth in living tissues (see for instance, the recent review [32]). Nevertheless, none of these studies 
addresses primal-mixed methods in the spirit of the present basic idea.

Specific aims of this paper include:

• To introduce a mixed-primal formulation for a coupled Lagrangian elastodynamics–reaction–diffusion system where the 
mixed problem associated to the elasticity equations is written in terms of strains and deformations, and where the 
strain conveniently enters in the primal formulation of the reaction–diffusion system

• to develop a robust mixed finite element method suitable for the numerical study of a large class of coupled reaction–
diffusion systems in elastic and hyperelastic domains

• to present separate formulations for linear and nonlinear mechanics
• to model the influence of reacting species into body deformation employing either a forcing term depending on the 

species concentration gradient, or an active strain decomposition.

Natural applications for the proposed framework are cardiac chemo- and electro-mechanical problems, however the present 
method is general enough to accommodate the study of many other related systems in biology and engineering.

Outline. We have arranged the contents of this paper in the following manner. Section 2 presents the derivation of the 
reaction–diffusion–elasticity equations, where the mechanics of the medium is specified in two cases: a linear and a non-
linear hyperelastic material law. We recall some properties of the split systems and we introduce two primal-mixed weak 
formulations associated to the original coupled problem. In Section 3 we formulate the spatio-temporal discrete set of equa-
tions to be solved, its linearization via a Newton method, and we specify the choice of time advancing strategy and finite 
element spaces. Some numerical examples are given in Section 4, including accuracy assessment and several applications 
related to cardiac chemo-mechanics. We close with some remarks and perspectives collected in Section 5.

2. Reaction–diffusion equations on a deformable domain

2.1. Kinematics, motion and deformation

Let �0 ⊂ R
d , d ∈ {2, 3} denote an elastic body with polyhedral boundary ∂�0, regarded in its undeformed reference 

configuration, and denote by ν the outward unit normal vector on ∂�0. We assume a splitting of the boundary ∂�0 =
�D

0 ∪ �N
0 into parts �D

0 and �N
0 where boundary loads and boundary tractions are imposed, respectively. A material point 

in �0 is denoted by x, whereas u : �0 → R
d denotes the deformation field that provides its position xt within the body 

�t in the current configuration, and v̂ = ∂t û|x is the (referential) velocity. The tensor F := ∇u is the gradient (applied 
with respect to the fixed material coordinates) of the deformation map, and E(u) = 1

2 [FtF − I], ε(u) := 1
2 [F + Ft] denote 

the Green–Lagrange and the infinitesimal strain tensors, respectively. The symbols ∇t , divt will stand for the gradient and 
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divergence operators taken with respect to the spatial coordinates xt . As usual, I is the d × d identity tensor, and we recall 
that gradient operators in the actual and undeformed configurations are connected by the relation ∇t (·) = F−t∇(·).

In general, we will be mostly interested in the case where the material is (fully) incompressible, represented by the 
constraint

J (u) := det F = 1

(or equivalently divt v̂ = 0) which is enforced by the use of a Lagrange multiplier p, interpreted as the hydrostatic pres-
sure field; and where the material exhibits a hyperelastic mechanical response. Under the assumption of small strains, the 
incompressibility condition boils down to

trε(u) = div u = 0.

We concentrate the presentation for two particular cases: a linear Saint Venant–Kirchhoff and a nonlinear Neo-Hookean 
material, whose behavior can be completely described by the strain (or free energy density) functions

�
(
F(u)

) = λ

2
[trε(u)]2 + με(u) : ε(u),

and �
(
F(u)

) = λ tr E + μ

2
( J (u) − 1)2,

respectively (see e.g. [6]), where λ, μ stand for the Lamé moduli in the context of the linear material, and (clearly making 
abuse of notation) also for the shear and bulk moduli in the Neo-Hookean case, respectively. The hydrostatic pressure and 
the first Piola–Kirchhoff stress tensor read respectively in each case

p

λ
= P(u) =

{
div u,

J (u) − 1,

and σ (u, p) = ∂�

∂F
=

{
2με + pI,
2μF + p J (u)F−t.

The constitutive equation along with balances of mass and momentum are collected in the following system, written in 
total Lagrangian formulation

σ (u, p) = ∂�

∂F
in �0 × (0, T ), (2.1a)

1

λ
p = P(u) in �0 × (0, T ), (2.1b)

∂tt u − divσ (u, p) = f (s) in �0 × (0, T ), (2.1c)

σν = gN on �N
0 × (0, T ), (2.1d)

u = gD on �D
0 × (0, T ). (2.1e)

Notice that the motion of the body is assumed to be weakly influenced by pressure-like internal reactions encoded as a 
smooth body force being directly proportional to the local (material) gradient of scalar fields s1, s2, . . . to be made precise 
later:

f := f (s1,∇s1, s2,∇s2, · · ·).

Remark 1 (Active contraction). In some circumstances the internal chemical reactions strongly affect the body motion, such 
as in active muscle contraction. In these situations a weak coupling needs to be replaced by e.g. an active-strain approach 
(see [45,53] for examples in cardiac electromechanics and developmental modeling, respectively), where it is assumed that 
the deformation gradient F can be rewritten in terms of a Kröner–Lee multiplicative decomposition

F = FeFo, (2.2)

where Fo is the active deformation tensor (here representing growth or contraction), to be constitutively prescribed by the 
scalar fields si (denoting for instance, species concentrations), and Fe is the passive elastic deformation tensor, or instanta-
neous accommodation tensor of the body in a virtual intermediate configuration. Such a splitting is well-known in many 
constitutive theories (see for instance, the review in [36]).

Defining the variables γ f , γs , γn as the relative displacements in the orthonormal directions f 0, s0, n0 of a contracting 
unit of the body, respectively, the local deformation is

Fo = I + γ f f 0 ⊗ f 0 + γss0 ⊗ s0 + γnn0 ⊗ n0.

Notice that γ f represents the active growth or active shortening of the body contracting units, whereas γs , γn will take into 
account the associated thickening or shrinking, in order to obey material incompressibility. The thermodynamic assumption 
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Fig. 1. Active strain decomposition entailing the introduction of a virtual intermediate configuration �e between the reference and current states.

of the multiplicative decomposition (2.2) is that the active deformation Fo stores no energy, so that the strain energy func-
tion in the intermediate configuration (see sketch in Fig. 1) is �̂ = �(Fe). Finally, a pull-back to the reference configuration 
yields

�strain = det Fo�̂ = det Fo�(FF−1
o ),

which in turn implies that (2.1) is replaced by

σ (u, p,γ ) = ∂ det Fo�(FF−1
o )

∂F
,

1

λ
p = P(u),

∂tγ = K (γ , s),

∂tt u − divσ (u, p,γ ) = f (s),

σν = gN,

u = gD, (2.3)

where γ = (γ f , γs, γn) and the third equation stands for the constitutive equation for the local active strain and its rate (see 
examples of specifications for K in e.g. [21]).

Remark 2 (Pressure elimination). Incompressibility is a typical assumption in the modeling of soft biological tissues, partially 
justified by the high percentage of water in the cells and proportionally low compressibility of extracellular constituents [2]. 
If in addition we consider a Saint Venant–Kirchhoff material in spatial dimension d, then (2.1a) and (2.1b) can be replaced, 
respectively, by

σ = 2με(u) + pI and p − 1

d
trσ = 0 in �0 × (0, T ),

which implies that we can eliminate p from the first equation, yielding

1

2μ
σ d = ε(u) in �0 × (0, T ),

where τ d := τ − 1
d trτ I for all τ ∈ L

2(�0) (see e.g. [19]).

Remark 3 (Stress splitting). In the case of Neo-Hookean materials, and also for sake of the mixed formulation in mind, we 
can replace (2.1a) and (2.1c) by

1

2μ
σ̃ = F, and −∂tt u + div σ̃ − div [p J (u)F−t] = − f (s),

in �0 × (0, T ), respectively.

Existence of solutions to (2.1) has been established in e.g. [35] for displacement-pressure formulations, based on classical 
arguments of polyconvexity of the strain energy and the implicit function theorem. For instance, discontinuous Galerkin 
formulations for (2.1) and (2.3) have been introduced and analyzed in [59,3], respectively.
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2.2. Mixed formulations for elasticity

From now on, standard notation will be adopted for Lebesgue spaces Lp(�0) and Sobolev spaces Hs(�0) with norm 
‖ · ‖s,�0 . By M, M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar functional 
space M. We define the spaces H1

D(�0) = {v ∈ H1(�0) : v|�D = gD}, H1
D,0(�0) = {v ∈ H1(�0) : v|�D = 0}, and we recall that 

the space

H(div;�0) := {τ ∈ L
2(�0) : divτ ∈ L2(�0)},

equipped with the usual norm ‖τ‖2
div,�0

:= ‖τ‖2
0,�0

+ ‖div (τ )‖2
0,�0

is a Hilbert space, and we introduce

HN(div;�0) := {τ ∈ H(div;�0) : τν = 0 on �N
0 }.

Multiplying the nonlinear, coupled equations (2.1) by suitable test functions, integrating by parts over �0, and using 
Remark 3 we arrive at the following variational form of the model problem with Neo-Hookean elasticity:

For any t > 0, find (σ̃ (t), u(t), p) ∈HN (div; �0) × H1
D(�0) × L2(�0) satisfying

1

2μ

∫
�0

σ̃ (t) : τ +
∫
�0

u(t) · divτ =
∫
�D

0

gD · [τν],

∫
�0

v · div σ̃ (t) −
∫
�0

∂tt u(t) · v −
∫
�0

p J (u)∇u−t : ∇v = −
∫
�0

f · v,

−
∫
�0

q[ J (u) − 1] + 1

λ

∫
�0

pq = 0, (2.4)

for all (τ , v, q) ∈HN (div; �0) × H1
D,0(�0) × L2(�0).

For the linear Saint Venant–Kirchhoff material, and thanks to Remark 2, we can write (2.4) as:

Find (σ (t), u(t)) ∈ HN (div; �0) × H1
D(�0) such that

1

2μ

∫
�0

σ d(t) : τ d +
∫
�0

u(t) · divτ =
∫
�D

0

gD · [τν], ∀τ ∈HN(div;�0),

∫
�0

v · divσ (t) −
∫
�0

∂tt u(t) · v = −
∫
�0

f · v, ∀v ∈ H1
D,0(�0). (2.5)

The (formal) matrix structures of (2.4) and (2.5) are respectively as follows(A B∗ 0
B −C dEu
0 E∗ S

)
︸ ︷︷ ︸

M1

(
σ̃
u
p

)
= RHS1,

(
A B∗
B −C

)
︸ ︷︷ ︸

M2

(
σ d

u

)
= RHS2, (2.6)

where the involved linear and nonlinear operators A : HN (div; �0) → HN (div; �0)
′ , B : HN (div; �0) → [H1

D(�0)]′ , B∗ :
H1

D(�0) → HN (div; �0)
′ , C : H1

D(�0) → [H1
D(�0)]′ , dEu : L2(�0) → [H1

D(�0)]′ , E∗ : H1
D(�0) → L2(�0)

′ , and S : L2(�0) →
L2(�0)

′ are defined by

[A(σ ),τ ] := 1

2μ

∫
�0

σ : τ , [B(σ ), v] :=
∫
�0

v · divσ ,

[B∗(u),τ ] :=
∫
�0

u · divτ , [C(u), v] :=
∫
�0

∂tt u · v,

[dEu(p), v] := −
∫
�0

p J (u)∇u−t : ∇v,

[E(p), v] := −
∫
�0

p[ J (v) − 1],

[E∗(u),q] := −
∫

q[ J (u) − 1], [S(p),q] := 1

λ

∫
pq.
�0 �0
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The motivation for the stress splitting of Remark 3 becomes evident after observing the matrix structures in (2.6). Notice 
that M2 yields a linear saddle-point problem whose solvability depends on the coercivity of the diagonal forms in the kernel 
of B and on adequate inf–sup conditions for B. On the other hand, except for E , the system with matrix M1 possesses the 
structure of a linear twofold saddle-point problem and it can be studied as in e.g. [18], where the analysis of a continuous 
problem and of mixed finite element formulations can be found (see also [20,28], where the theory is extended to nonlinear 
problems).

In the presence of the nonlinear maps E and dE , the system cannot be treated directly as a twofold saddle point with the 
arguments from [20], since the nonlinearity is not in the diagonal block of M1 . However, [35] presents a suitable framework 
where the conditions for existence of solutions are the ellipticity of A, continuity of C , appropriate inf–sup conditions 
for B, continuous differentiability of E in a neighborhood of u and that its gradient dE has a splitting kernel and satisfies a 
suitable inf–sup condition.

2.3. Reaction–diffusion equations

For sake of simplicity we will restrict the discussion to reaction–diffusion systems describing the spatio-temporal interac-
tion of the densities of two species w1, w2, however the presentation is straightforwardly generalizable to the case of more 
species. Assuming that all constituent species are equi-present at each spatial point, the Reynolds transport theorem applied 
to the mass conservation of these species yields the following general and non-dimensional reaction–diffusion system for 
w1, w2 on a spatial (time-dependent) domain

∂t wi + v̂ · ∇t wi − divt(Di∇t wi) = Hi(w1, w2), (2.7)

in �t × (0, T ), for i = 1, 2, where Di ∈ R
d×d is a tensor of (possibly anisotropic) diffusion rates and Hi(w1, w2) are the 

reaction kinetics of the system representing the production and degradation of each species concentration. In this particular 
case, cross-diffusion effects are neglected and the coupling is present only in the reactive terms. Well-studied examples 
include the Schnakenberg model [51], the Gray–Scott model [25], and the FitzHugh–Nagumo equations [16,43], to name a 
few. Notice that the medium incompressibility has been already incorporated in (2.7) by assuming that divt(v̂ wi) = v̂ ·∇t wi . 
A Lagrangian representation of the domain motion allows to rewrite the target system on a fixed domain in its reference 
configuration. Pulling back (2.7) to the initial configuration, using the Piola identity div ( J F−t) = 0, applying the material 
incompressibility, and endowing the system with zero-flux boundary conditions, we arrive at

∂t wi − div (F−1DiF
−t∇wi) = Hi(w1, w2) in �0 × (0, T ), for i = 1,2,

F−1DiF
−t∇wi · ν = 0 on ∂�0 × (0, T ), for i = 1,2. (2.8)

For a fixed domain (i.e. F known), the positivity of initial data, the Lipschitz regularity of the reactive terms Hi(·, ·), 
and monotonicity of the diffusive term are sufficient to establish the existence and uniqueness of weak solutions to (2.8)
(see e.g. [30], and the references therein). In addition, and depending on the specific form of the reaction kinetics Hi(·, ·), 
it is possible to derive so-called Turing conditions under which spatial patterns can emerge influenced by diffusion-driven 
instabilities [55]. This is standard practice in fixed domains, however these conditions are quite different and maybe very 
difficult to obtain for moving domains, even for very specific types of movement (cf. [37]). Alternatively to (2.8), one could 
also devise a mixed formulation for the reaction–diffusion problem introducing the gradients of variables wi as additional 
unknowns (see [29] for an application of gradient flows in cardiac electrophysiology), but in this context we are only 
interested in recovering the scalar primal fields.

2.4. Weak formulation for the coupled model problem

Multiplying (2.8) by suitable test functions, integrating by parts over �0, and putting the result together with (2.4), we 
arrive at the following primal-mixed variational form of the model problem with Neo-Hookean elasticity in terms of species 
concentration, strains, deformations and pressure:

For any t > 0, find (w1(t), w2(t), σ̃ (t), u(t), p) ∈ H1(�0) × H1(�0) ×HN (div; �0) × H1
D(�0) × L2(�0) satisfying

[Wσ̃ (w1(t), w2(t)), (s1, s2)] = [H(w1(t), w2(t)), (s1, s2)],
[A(σ̃ (t)),τ ] + [B∗(u(t)),τ ] = G(τ ),

[B(σ̃ (t)), v] − [C(u(t)), v] + [dEu(p), v] = [F(w1(t), w2(t)), v],
[E∗(u(t)),q] + [S(p),q] = 0, (2.9)

for all (s1, s2, τ , v, q) ∈ H1(�0) × H1(�0) ×HN (div; �0) × H1
D,0(�0) × L2(�0), and where

[Wσ̃ (w1, w2), (s1, s2)] :=
2∑

i=1

∫
�0

∂t wi si + 4μ2
∫
�0

σ̃−1Diσ̃
−t∇wi · ∇si, G(τ ) :=

∫
�D

gD · τν,
0
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[H(w1, w2), (s1, s2)] :=
2∑

i=1

∫
�0

Hi(w1, w2)si, [F(w1, w2), v] := −
∫
�0

f (w1, w2) · v.

An analogous system arises in the case of a linear Saint Venant–Kirchhoff material. Existence and uniqueness results for 
(2.9) are not yet available from the literature, and they currently go beyond the scope of the present paper. However a 
similar (linearized) system arising in the study of cardiac electromechanics has been recently studied in [1] using parabolic 
regularization, the Faedo–Galerkin method, and monotonicity–compactness arguments.

3. Discretization of the model problem

Here we focus on the space–time discretization of the coupled problem (2.9). A Rothe-type strategy is used, where we 
first apply a time discretization based on finite differences (in particular, the well-known BDF2 method), followed by the 
formulation of a primal-mixed finite element method for the spatial discretization.

3.1. Time discretization

The evolution in time is performed considering a uniform partition of the interval [0, T ] as [0, . . . , tn, . . . , tN = T ] into 
N subintervals of size �t . We apply a second order backward difference advancing scheme (BDF2, see e.g. [26]): For given 
values of w0

i , w−1
i , σ 0, u0, u−1, u−2, p0, and for n = 0, 1, . . . , find (wn+1

1 , wn+1
2 , σ n+1, un+1, pn+1) such that

2∑
i=1

1

�t

(
ẇn+1

i , si
)
�0

+ 4μ2(σ̃−1Diσ̃
−t∇wn+1

i ,∇si
)
�0

= [H(wn+1
1 , wn+1

2 ), (s1, s2)],

[A(σ̃ n+1
),τ ] + [B∗(un+1),τ ] = G(τ ),

[B(σ̃ n+1
), v] − 1

(�t)2
(ün+1, v)�0 + [dEun+1(pn+1), v] = [F(wn+1

1 , wn+1
2 ), v],

[E∗(un+1),q] + [S(pn+1),q] = 0,

for all (s1, s2, τ , v, q) ∈ H1(�0) × H1(�0) ×HN (div; �0) × H1
D,0(�0) × L2(�0), where the dot and double dot symbols denote 

the second order BDF approximations of the first and second time derivatives, respectively, i.e.,

ṡn+1 := 3

2
sn+1 − 2sn + 1

2
sn−1,

v̈n+1 := 2vn+1 − 5vn + 4vn−1 − vn−2.

Since the time advancing scheme is fully implicit, no CFL condition is required in principle. However, in all subsequent 
simulations, the time step will be heuristically chosen so that the underlying physics of each particular problem are not 
missed.

3.2. Space discretization

Let us denote by Th a regular simplicial partition of �0 by triangles (for d = 2, or tetrahedra for d = 3) K of diameter hK

and define the meshsize as h := max{hK : K ∈ Th}. For the approximation of strains, deformations, species concentrations, 
and pressure, respectively, we will employ finite dimensional spaces Hh , Vh , Sh , Q h that we will specify later on. The 
fully-discrete counterpart of the nonlinear system (2.9) consists in solving

2∑
i=1

1

�t

(
ẇn+1

i,h , si
)
�0

+ 4μ2(σ̃−1
h Diσ̃

−t
h ∇wn+1

i,h ,∇si
)
�0

= [H(wn+1
1,h , wn+1

2,h ), (s1, s2)],

[A(σ̃ n+1
h ),τ ] + [B∗(un+1

h ),τ ] = G(τ ),

[B(σ̃ n+1
h ), v] − 1

(�t)2
(ün+1

h , v)�0 + [dEun+1
h

(pn+1
h ), v] = [F(wn+1

1,h , wn+1
2,h ), v],

[E∗(un+1
h ),q] + [S(pn+1

h ),q] = 0, (3.1)

for all (s1, s2, τ , v, q) ∈ Sh ×Hh × Vh × Q h and for each n = 0, 1, . . . . In what follows, and whenever clear from the context, 
we will drop the superscript n + 1 corresponding to the current time step.
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3.3. Consistent Newton–Raphson linearization

As long as we focus on Saint Venant–Kirchhoff materials, the only nonlinearities in (3.1) consist in the reaction and 
the coupling terms. For instance, a standard fixed point argument allows the decoupling of the governing equations and 
an abundant literature exists dedicated to the analysis and efficient mixed finite element discretization of linear elasticity, 
where the constitutive equation can be easily inverted (see e.g. [11], and the references therein). The scenario is less favor-
able for nonlinear materials and so we provide details on the Jacobian employed in the solution of the linearized equations. 
We will denote by (δw1,h, δw2,h, δσ̃ h, δuh, δph) the incremental solutions to the following linearization of (3.1) around a 
generic state (ŵ1,h, ŵ2,h, ̂σ̃ h, ûh, p̂h):

2∑
i=1

3

2�t
(δwi,h + ŵi,h, si)�0 − 4μ2

2∑
i=1

(̂̃σ−1
h Di

̂̃σ−t
h δσ̃ t

h
̂̃σ−t

h ∇ ŵi,h,∇si
)
�0

+ 4μ2
2∑

i=1

(̂̃σ−1
h Di

̂̃σ−t
h ∇δwi,h,∇si

)
�0

− 4μ2
2∑

i=1

(̂̃σ−1
h δσ̃ h

̂̃σ−1
h Di

̂̃σ−t
h ∇ ŵi,h,∇si

)
�0

−
2∑

i=1

1

2�t
(4ŵn

i,h − ŵn−1
i,h , si)�0 − [dH(δw1,h, δw2,h), (s1, s2)] − [H(ŵ1,h, ŵ2,h), (s1, s2)] = 0,

[A(δσ̃ h),τ ] + [A(̂̃σ h),τ ] + [B∗(δuh),τ ] + [B∗(ûh),τ ] − G(τ ) = 0,

[B(δσ h), v] + [B(σ̂ h), v] − 2

(�t)2
(δuh + ûh, v)�0 + [dEûh

(δph), v] + [d2Eδuh,ûh
(p̂h), v]

+ [dEûh
(p̂h), v] + 1

(�t)2
(5un

h − 4un−1
h + un−2

h , v)�0 − [dF(δw1,h, δw2,h), v]
− [F(ŵ1,h, ŵ2,h), v] = 0,

[dE∗(δuh),q] + [E∗(ûh),q] + [S(δph),q] + [S(p̂h),q] = 0, (3.2)

for all (s, τ , v, q) ∈ Sh ×Hh × Vh × Q h , where the (Gâteaux) derivatives appearing in (3.2), computed in the direction of the 
corresponding increments are

[dH(δw1, δw2), (s1, s2)] :=
2∑

i, j=1

∫
�0

d

dŵ j
Hi(ŵ1, ŵ2)δw j s j,

[dF(δw1, δw2), v] := −
2∑

i=1

∫
�0

δwi
d

dŵi
f (ŵ1, ŵ2) · v,

[dE∗(δu),q] := −
∫
�0

q J (û)∇ û−t div(δu),

[d2Eδu,û(p̂), v] :=
∫
�0

p̂ J (û)∇ û−t
(∇δu − ∇δut)∇ û−t : ∇v.

Provided that the initial guess is sufficiently close to the updated solution, the use of the exact Jacobian ensures quadratic 
convergence of the Newton algorithm.

3.4. Finite element spaces

As usual, Pr(R) denotes the space of polynomial functions of degree s ≤ r defined on the set R . For each element K ∈ Th , 
we recall that the local Raviart–Thomas space of order k, k ≥ 0 is defined as

RTk(K ) = Pk(K )d ⊕ Pk(K )x,

for x ∈R
d , the local Brezzi–Douglas–Marini space of order k is defined as

BDMk(K ) = Pk(K )d ∩ H(div, K ),

and we specify the finite element spaces Hh ⊂ HN (div; �0), Vh ⊂ H(div, �0), Sh ⊂ H1(�0), Q h ⊂ L2(�0) for the approxima-
tion of strains, deformations, species concentrations, and pressure, respectively, as follows:
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Hh := {τ h ∈ HN(div;�0) : (τ i1
h , . . . , τ id

h )t ∈RTk(K ), ∀i ∈ {1, . . . ,d}, ∀K ∈ Th},
Vh := {vh : vh|K ∈ BDMk+1(K ), ∀K ∈ Th},
Sh := {sh ∈ H1(�0) : sh|K ∈ Pk+1(K ), ∀K ∈ Th},

Q h := {qh ∈ L2(�0) : qh|K ∈ Pk(K ), ∀K ∈ Th}.
Notice that for the linear elastic material, one could also employ [Pk(K )]d elements (with arbitrary k ≥ 0) for the approxi-
mation of the deformation field, since neither the gradient of trial nor tests deformations appear in the discrete formulation 
associated to (2.5).

Concentrating only on the hyperelasticity part of (3.2), we realize that its matrix structure assumes the form(A B∗ 0
B −C d̂E
0 d̂E∗ −S

)(
δσ̃ h
δuh
δph

)
= RHS3,

which is a linear problem for the solution increments, where RHS3 contains body and boundary forces, the terms associated 
to the previous time steps, and the Newton residuals. Assuming enough regularity, this twofold saddle point system can be 
solved as long as A is Hh-elliptic, C , S are positive semi-definite, and B, d̂E satisfy uniform inf–sup conditions on Hh × Vh
and Vh × Q h , respectively (see e.g. [20]).

Formally, expected convergence rates for the spatial approximation of the linearized coupled problem (3.2) will be opti-
mally of order k + 1 in the natural norms (in the sense that they coincide with the interpolation properties of the specific 
spaces employed herein).

4. Numerical examples

This section contains an example assessing the experimental spatio-temporal convergence rate of the proposed primal-
mixed method, plus some selected illustrative tests of high interest in the simulation of meso and macroscopic cardiac 
chemo-mechanics.

4.1. Accuracy tests

We first verify the spatial convergence of the proposed numerical scheme, restricting ourselves to the lowest order case 
(k = 0). We consider the following version of (2.9) defined on the unit disk �0 = {(x, y) : x2 + y2 ≤ 1} and for the time 
horizon t ∈ (0, T = 1)∫

�0

∂t w1s1 + 4μ2
∫
�0

σ̃−1D1σ̃
−t∇w1 · ∇s1 −

∫
�0

w1s1 =
∫
�0

f1s1,

∫
�0

∂t w2s2 + 4μ2
∫
�0

σ̃−1D2σ̃
−t∇w2 · ∇s2 −

∫
�0

w2s2 =
∫
�0

f2s2,

[A(σ̃ ),τ ] + [B∗(u),τ ] =
∫
�D

0

gD · [τν],

∫
�0

∂tt u · v + [B(σ̃ ), v] + [dEu(p), v] +
∫
�0

f (w1, w2) · v = −
∫
�0

g · v,

[E∗(u),q] + [S(p),q] = 0, (4.1)

which admits an exact solution given by

u = 2μ sin(
π

2
t)(− sin(x) cos(y), cos(x) sin(y))t,

p = 4μ2π2 sin2(
π

2
t)(sin2(x) sin2(y) − cos2(x) cos2(y)),

w1 = sin(
π

2
t)exp(−x) cos(y), w2 = sin(

π

2
t)exp(−y) sin(x). (4.2)

We consider the material to be Neo-Hookean and choose λ = 1, μ = 0.09, f (w1, w2) = w2
1 w2 − w1 w2

2, while source 
terms f1, f2, g and Dirichlet boundary conditions of the problem are adjusted according to these exact solutions. The 
computational domain is discretized on a family of unstructured triangular meshes having 2l+1, l = 0, 1, . . . nodes on the 
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Table 1
Spatial and temporal error history associated to the FEM-BDF2 discretization of the model problem, computed until a final time T = 1. Errors on the top 
rows were computed using a fixed time step of � = 0.001, whereas those on the bottom rows were obtained on a fine mesh of size h = 0.0109.

Space convergence

h eh(w1) rh(w1) eh(w2) rh(w2) eh(σ ) rh(σ ) eh(u) rh(u) eh(p) rh(p)

1.0017 2.6442 – 2.6530 – 0.8381 – 0.9533 – 0.2799 –
0.7534 2.1830 0.6725 2.1881 0.6769 0.6725 0.7724 0.7734 0.7347 0.2177 0.8824
0.3818 1.1361 0.9614 1.1360 0.9636 0.3467 0.9749 0.3983 0.9762 0.1119 0.8793
0.2037 0.6098 0.9899 0.6089 0.9929 0.1860 0.9909 0.2133 0.9937 0.0599 0.9243
0.1070 0.3211 0.9965 0.3209 0.9954 0.0979 0.9965 0.1123 0.9971 0.0315 0.8984
0.0561 0.1692 0.9921 0.1693 0.9898 0.0517 0.9887 0.0589 0.9981 0.0165 0.9397
0.0294 0.0907 0.9662 0.0906 0.9683 0.0278 0.9599 0.0311 0.9894 0.0086 0.9959
0.0167 0.0556 0.8632 0.0555 0.8662 0.0173 0.8352 0.0181 0.9547 0.0049 0.9637

Time convergence

�t e�t (w1) r�t (w1) e�t (w2) r�t (w2) e�t (σ ) r�t (σ ) e�t (u) r�t (u) e�t (p) r�t (p)

0.1000 194.56 – 187.80 – 55.278 – 62.409 – 21.698 –
0.0500 43.950 1.8210 41.730 1.8565 14.062 1.8874 16.385 1.9037 6.3712 1.9021
0.0250 11.162 1.9247 10.427 1.9082 3.5731 1.9250 4.8210 1.8978 1.6147 1.9574
0.0125 3.3217 1.8962 2.8633 1.8301 0.9013 1.8346 1.2367 1.9344 0.4258 1.9338
0.0062 0.8281 1.9615 0.8236 1.9803 0.2678 1.8804 0.4109 1.9486 0.1129 1.8076
0.0031 0.2152 1.8921 0.2231 1.8320 0.0680 1.8372 0.1063 1.9590 0.0253 1.9039
0.0017 0.0577 1.9187 0.0561 1.9473 0.0169 1.7471 0.0268 1.9332 0.0062 1.8894
0.0008 0.0142 1.9452 0.0141 1.9682 0.0043 1.9603 0.0065 1.9764 0.0016 1.9342

circle defining the domain boundary. Relative spatial errors and convergence rates between exact and approximate solutions 
in different norms are defined as

eh(σ ) = ‖σ (·, T ) − σ N
h ‖div,�0

‖σ (·, T )‖div,�0

, eh(u) = ‖u(·, T ) − uN
h ‖1,�0

‖u(·, T )‖1,�0

,

eh(wi) = ‖wi(·, T ) − w N
i,h‖1,�0

‖wi(·, T )‖1,�0

, eh(p) = ‖p(·, T ) − pN
h ‖0,�0

‖p(·, T )‖0,�0

, rh(·) = log(eh(·)/êh(·))
log(h/ĥ)

, (4.3)

where e and ê denote errors generated on two consecutive meshes of sizes h and ĥ. These errors are computed using Gauss 
quadrature formulas that are, for the chosen approximation spaces, exact on each element. Here q(·, T ) and qN

h denote 
the continuous and discrete approximation of the generic field q evaluated at the final time tN = T . We depict in Table 1
empirical relative errors and convergence rates (4.3) for the numerical solutions compared with respect to (4.2), as function 
of the meshsize h, where we observe first order convergence for all fields in their relevant norms. We also evidence a 
second order convergence rate for the time approximation of the problem when refining the timestep �t . Errors associated 
to the temporal discretization of a generic field q are measured in the �∞(0, t; ·)-norm, that is:

e�t(q) =
N∑

n=0

‖q(·, tn) − qn
h‖i,�, r�t(q) = log(e�t(q)/ê�t(q))

log(�t/�̂t)
,

on successively refined partitions of (0, T ), where i ∈ {div, 0, 1}. Even if rigorous theoretical estimates are not yet available 
for problems like (4.1), related (continuous in time) results for elasticity, poroelasticity and cardiac mechanics [3,11,47,49,60]
suggest that the obtained rates are optimal. At each Newton iteration the involved linear systems have been solved with 
the GMRES method (with a tolerance of 1e−7), combined with Schwarz preconditioning. Fig. 2 displays a snapshot of the 
approximate solutions at the final time T = 1, obtained with the proposed mixed-primal formulation on a mesh generated 
after six levels of refinement (representing roughly 200K degrees of freedom).

4.2. Slow calcium waves in isolated cardiomyocytes

Simplified calcium-induced-calcium-release dynamics inside a single cardiac cell can be modeled with the following 
specification for the reaction terms [24], where w1, w2 represent the concentrations of cytosolic and sarcoplasmic calcium

H1(w1, w2) = ν1 − ν2 w2
1

k2 + w2
1

+ ν3 w4
1 w2

2

(k3 + w2
2)(k4 + w4

1)
− ν4 w1,

H2(w1, w2) = ν2 w2
1

k + w2
− ν3 w4

1 w2
2

(k + w2)(k + w4)
− ν5 w1. (4.4)
2 1 3 2 4 1
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Fig. 2. Approximate norm of the Neo-Hookean stress tensor (top left), velocity components with vectors (top center and right), pressure profile (bottom 
left), and species concentrations (bottom center and right) for the spatio-temporal accuracy test, all rendered on the deformed domain �t , and computed 
at the final time T = 1. For sake of visualization we also depict a coarse mesh of the reference disk-shaped domain �0.

Fig. 3. Phase portrait of species w1, w2 including typical nullclines and numerically computed trajectories of local kinetics starting from points A, B , C and 
reaching the origin (left) and reaction kinetics (right) for the Goldbeter model (4.4).

Here ν1 = 1.58 represents an inflow flux plus intracellular calcium pulses originated from the asynchrony of calcium pools 
receptors, ν2 = 16 and ν3 = 91 account for low and high levels of free cytosolic calcium flux pumped from the sarcoplasmic 
reticulum, and ν4 = 2 models an efflux of calcium out of the cell following a chemical exchange process. The remaining 
parameters are ν5 = 0.2, k2 = 1, k3 = 4, k4 = 0.934. Only cytosolic calcium is assumed to diffuse, with anisotropy imposed 
by D1 = diag(D f , Ds, Dn) with D f = 60, Ds = 30, Dn = 30, and D2 = 0. These parameter values lead to cyclic patterns on a 
fixed domain (see Fig. 3).
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Fig. 4. Propagation of two calcium waves starting at the ends of a single cardiomyocyte. The employed mesh has 77 031 elements and 18 191 vertices. The 
superimposed hollow geometry represents the deformed configuration.

The material is assumed nonlinear mimicking the properties of living tissue, and we use an active stress approach to 
incorporate the influence of calcium (in this case, cytosolic calcium only) into the cell deformation. We propose to employ 
the following specification of the forcing term

f (w1) = γ f0 ⊗ f0∇w1 + w1div (f0 ⊗ f0), (4.5)

where f0 is a local unit vector denoting a known preferred direction of contraction in the myocyte reference configuration, 
and γ = 0.25 is an amplification factor. This term arises from an active stress of the form γ w1f0 ⊗ f0. Robin boundary 
conditions are applied on the whole surface ∂�0. A tetrahedral mesh comprising 77 031 elements and 18 191 vertices 
(cf. [22]) is employed for the subsequent simulations (see initial fiber distribution in the top left panel of Fig. 6), where 
we observe the propagation of cytosolic calcium starting from initial sparks near the cell ends, and how it influences 
the contraction of the cell. Six snapshots of the evolution of calcium concentration w1 are displayed in Fig. 4. We stress 
that all computations are purely Lagrangian, that is, elasticity and reaction equations are always solved in the reference 
configuration and the domain is moved according to the resulting deformations. Strains obtained directly from the mixed 
elasticity formulation are compared to those computed by numerical differentiation from a pure displacement computation. 
We can see from Fig. 5 a clear loss of accuracy, concentrated specially on the regions of high residual gradients. This issue 
illustrates the importance of computing strains directly, particularly when the interest lies in identifying zones of adhesion, 
or in determining provoked wall stresses. Further insight can be achieved from plotting transients of the computed solutions 
on a point near the cell mass center. Fig. 6 shows the evolution of calcium concentrations, displacement in all directions, 
and norm of the strain computed from numerical differentiation (test A) and from the mixed formulation (test B). A clear 
underestimation of strains and spurious oscillations are seen in test A with respect to the direct computation of test B, 
whereas calcium and displacements coincide in both tests.

Finally, we verify the optimal convergence of the numerical solution by looking at the quadratic decay of Newton–
Raphson residuals associated to each field. Even though the results in Table 2 are provided for a single time step, a similar 
behavior is evidenced throughout the whole simulation.
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Fig. 5. Comparison of the time evolution of strains obtained via postprocessing from displacements (test A, left panels) and strains computed directly from 
the mixed formulation (test B, right panels). Here the hollow mesh represents the undeformed reference configuration.

4.3. Electric waves on slabs of excitable living tissue

We now turn to the simulation of potential propagation and its interaction with the deformable tissue. The specific 
model has been proposed in [46] and similar variants have been explored in e.g. [13]. The kinetics considered herein are

H1(w1, w2) = −kw1(w1 − a)(w1 − 1) − w1 w2 + Iext,

H2(w1, w2) =
(

c + d1 w2

d2 + w1

)(−w2 − kw1(w1 − b − 1)
)
, (4.6)

where a = b = 0.1, k = 8.0, c = 0.01, d1 = 0.12, and d2 = 0.3 are dimensionless parameters and Iext denotes a given time-
or time- and space-dependent external stimulus. In this case the activation of the tissue deformation is encoded using the 
active-strain approach (see Remark 1) with an activation evolution dictated by

K (γ , w2) = k1 I4(1 + γ )3 + k2 w2, (4.7)

where k1 = −0.3, k2 = −2.4. Reaction kinetics and a phase diagram are shown in Fig. 7.
The conductivity tensors for both species are taken isotropic Di = DiI with D1 = 60 and D2 = 50. As in the previous 

example, the material is assumed Neo-Hookean incompressible with λ = 1, μ = 4000, and the fibers direction is constant 
throughout the domain, aligned with the positive vertical axis f0 = (0, 1)T . The undeformed computational domain consists 
of a square with boundaries of length 50 and centered in the origin, which has been discretized into 29 244 triangular 
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Fig. 6. Transients at a single point P on the myocyte boundary. Calcium concentrations (top right), displacement components (bottom left), and strains 
obtained via postprocessing from displacements (test A) or mixed formulation (test B) (bottom right).

Table 2
L2-norm of the residual vectors associated to the primal-mixed discretization of the single cell model, computed from time t = 2 −�t to t = 2 and stopped 
when reaching the tolerance 1e−8.

Iter. number ‖res(w1)‖ ‖res(w2)‖ ‖res(σ )‖ ‖res(u)‖ ‖res(p)‖
1 7.0388e+1 4.1768e+1 1.9204e+1 3.7492e+0 6.7291e+0
2 1.3827e−2 3.7614e−2 4.0120e−2 1.1973e−1 8.8144e−1
3 2.7652e−4 5.8706e−4 6.8255e−4 3.8311e−3 1.9463e−3
4 1.6930e−5 2.9384e−6 5.7713e−6 7.0881e−5 7.2538e−5
5 1.1373e−7 3.5419e−7 1.0709e−7 2.6127e−7 9.5301e−8
6 3.3596e−9 1.9213e−9 5.4420e−9 6.2094e−9 8.4129e−9

elements and using 14 613 points. Robin conditions (with a bulk coefficient of 0.002) are enforced on the whole boundary. 
In order to onset the formation of spiral waves, a broken wave is considered as initial data [9]:

w1(x, y,0) =
{−1 if x ≥ 0, y ≥ 0,

1 if x < 0, y < 0,

0 otherwise,

w2(x, y,0) =
{−1 if x ≤ 0, y ≥ 0,

1 if x > 0, y < 0,

0 otherwise.

The timestep is set to �t = 0.001, and the Newton tolerance is fixed to 1e−8. Three snapshots illustrating the dynamics of 
the spatial distribution of species w1 and the corresponding motion of the hyperelastic domain are displayed in the bottom 
panels of Fig. 8. For comparison purposes we have also included a computation of a fixed-domain example employing 
exactly the same reaction–diffusion model, indicating in this case a faster conduction of the field w1.

4.4. Cardiac electro-mechanics

We close this section with the application of the proposed primal-mixed finite element formulation in the numerical 
simulation of a simplified cardiac electromechanical problem. As in the previous examples, the tissue is assumed hyperelas-
tic and anisotropic (with transverse isotropy across the fiber directions). The reaction–diffusion system corresponds to the 
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Fig. 7. Phase portrait of species w1, w2 with nullclines and numerically computed trajectories starting from points A, B , C and reaching the origin (left); 
and reaction kinetics (right) for the Aliev–Panfilov model with mechanical activation based on local stretch and w2 (4.6)–(4.7).

Fig. 8. Snapshots at time instants t = 25,50,100 of reentrant waves exhibited by species w1 for a fixed (top) and a hyperelastic (bottom) slab.

monodomain equations incorporating the four-fields single cell model for human epicardial action potential proposed in [7], 
and characterized by D2 = D3 = D4 = 0 and the reaction terms

H1(w1, w3, w4) = −w2 H(w1 − θ1)(w1 − θ1)(w v − w1)/(χτ f i) − H(w1 − θ2)w3 w4/(χτsi)

+ (w1 − w0)(1 − H(w1 − θ2))/(χτo) + H(w1 − θ2)/(χτso) + Iext,

H2(w1, w2) = (1 − H(w1 − θ1))(w2,inf − w2)/τ
−
1 − H(w1 − θ1)w2/τ

+
1 ,

H3(w1, w3) = (1 − H(w1 − θ2))(w3,inf − w3)/τ
−
2 − H(w1 − θ2)w3/τ

+
2 ,

H4(w1, w4) = ((1 + tanh(k3(w1 − v3)))/2 − w4)/τ3, (4.8)

where H denotes the Heaviside function and the parameters are set as vo = 0, v v = 1.58, θ1 = 0.3, θ2 = 0.015, θ−
1 = 0.015, 

θo = 0.006, τ− = 60, τ− = 1150, τ+ = 1.4506, τ− = 70, τ− = 20, k− = 65, v− = 0.03, τ+ = 280, τ f i = 0.11, τo,1 = 6, 
1,1 1,2 1 2,1 2,2 2 2 2
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Fig. 9. Left: rescaled time evolution of the transmembrane potential w1, and calcium w4 on a single point according to the Bueno–Orovio model (4.8), and 
activation field γ based on calcium, local stretch, and phenomenological force-length relations, governed by (4.9). Center: clipped biventricular geometry 
and generated fiber directions. Right: computational mesh partitioned into eight subdomains.

τo,2 = 6, τso,1 = 43, τso,2 = 0.2, kso = 2, vso = 0.65, τ3,1 = 2.7342, τ3,2 = 3, k3 = 2.0994, v3 = 0.9087, τsi = 2.8723, τ2,∞ =
0.07, w∗

2,∞ = 0.94. The constant initial conditions are w1(x, 0) = 0, w2(x, 0) = w3(x, 0) = 1, w4(x, 0) = 0.02155, and we 
employ a diffusion of D1 = 1.19 cm2/s for the first species.

Mechanical activation is imposed following the law derived in [48], which we modified accordingly to the transversely-
isotropic case

K (γ , w4) = F A(w4, I4) +
3∑

i=1

(−1)i(i + 1)(i + 2)I4γ
i, (4.9)

where F A(s, I4) = (w4 − w4,0)
2 R f l(I4), with w4,0 = 0.2155 and the force-length relationship R f l introduced in [49]. The 

dynamics of w1, w4 and γ are illustrated in Fig. 9, left. Robin boundary data are imposed on the whole epicardial boundary 
with coefficient 3.75 mmHg cm−1, whereas the ventricular wall undergoes an initial pressure of 15 mmHg, and is let stress 
free afterwards. The computational domain (see Fig. 9, center and right panels) consists of a biventricular geometry dis-
cretized into 94 590 tetrahedral elements and 23 210 vertices, on which a rule-based algorithm has been used to generate a 
fiber field [48, Algorithm 1]. We employed a timestep of �t = 0.05 ms and the external electric stimulus Iext was applied 
after 5 ms on the half lower part of the right ventricle. Fig. 10 presents a series of snapshots of the propagation of species 
w1 (the transmembrane potential) across the myocardium, and we also depict the corresponding deformed mesh according 
to the displacement field. We observe a milder contraction (both wall thickening and apex-base shortening) and a slightly 
lower conduction velocity than those reported in [48], which can be explained by differences in the activation mechanism 
model and the passive mechanical law (here we have restricted to Neo-Hookean materials, sheetlet directions have not been 
employed, and we do not discard the acceleration term in the momentum equation).

Let us point out that the influence of either a) postprocessing the strain tensor from the piecewise linear approxima-
tions of displacements, or b) computing it directly from the mixed formulation, not only affects the identification of high 
stress zones or other mechanisms directly related to strain computation, but also modifies substantially other indirectly 
related processes, such as the spatio-temporal behavior of the calcium field. Fig. 11 shows the dynamics of species w4 in 
scenarios a) (top panels) and b) (bottom panels). Here we can readily observe qualitative differences in terms of calcium 
conduction velocity, that in turn, will inevitably have an impact in the transmembrane potential conduction velocity. For 
instance, the computations shown in the top panels yield a maximum conduction velocity of 59 cm/s for w1, whereas those 
associated to case b) imply a maximum conduction velocity of 72 cm/s, the latter being closer to the expected physiological 
value (87 cm/s) reported in [44].

5. Concluding remarks

In this paper we have introduced a primal-mixed formulation for the two-way coupling of nonlinear reaction–diffusion 
equations and linear/nonlinear elasticity. A flexible and robust mixed finite element method has been proposed, which 
follows the same structure as the continuous formulation, and where the main advantage with respect to the methods 
introduced in [1,4] is the possibility of recovering with the desired accuracy the strain (deformation gradient) needed in the 
modified diffusion of the reaction–diffusion system, and, as usual in mixed methods, the restrictions on the finite element 
spaces associated to the elasticity equations can be relaxed. The proposed formulation has been structured so that it fits 
in the study of some typical scenarios in biological systems where the reactions affect directly the material displacements 
through either active stress or active strain models. The numerical scheme has been validated in terms of spatio-temporal 
accuracy of approximate solutions, and a few examples related to cardiac biomechanics were provided to illustrate its 
feasibility.
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Fig. 10. Clipped snapshots of transmembrane potential w1 and cut of the deformed mesh at time instants t = 100,300,500,700,900,1100 ms.

While this paper has focused on relatively simple cases, model complexity can be readily increased so that the present 
framework can be straightforwardly employed in the control of a larger class of problems and more involved (not necessarily 
biological) processes such as chemical reactions in fully-saturated rigid porous skeletons [17], and its extension to the case 
of deformable porous media. Many other ingredients can be added, for instance material orthotropy or statistical properties 
of fiber families [56], or multiscale descriptions. We stress that our model for the way that species’ concentration affects 
the motion of the tissue (for instance, (4.5)) depends strongly on the specific application, which leaves plenty of room for 
further investigation, especially in terms of restrictions imposed by the second law of thermodynamics and other aspects 
related to energy-derived mechanical activation [48,49] (see also Remark 1). Notice that remeshing is not performed in 
the present case, since the proposed formulation is entirely Lagrangian and the numerical solution is carried out using 
a fixed mesh on the reference configuration. Nevertheless, special techniques to enforce mesh quality during large body 
deformations may become essential if we couple the present framework with Eulerian descriptions of flow (e.g. in cardiac 
mechano-electrical-fluidic models), where mesh motion of the fluid domain may lead to highly distorted elements. A recent 
remedy, based on adaptive smoothing and remeshing is presented in [39].

Further lines of development also include HPC-related questions such as scalability of solvers and construction of smart 
preconditioners. Finally, we mention that the development of fully mixed formulations for (2.9) and their convergence 
analysis will be the subject of a separate contribution.
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Fig. 11. Snapshots of reentrant waves in species w4 at times t = 20, 150, 300 ms for the case of strains obtained via numerical differentiation from piecewise 
linear approximation of displacements (top), and strains computed directly from the mixed formulation (bottom panels).
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