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ABSTRACT
We analyse a PDE system modelling poromechanical processes (formu-
lated in mixed form using the solid deformation, fluid pressure, and total
pressure) interacting with diffusing and reacting solutes in the medium.
We investigate the well-posedness of the nonlinear set of equations using
fixed-point theory, Fredholm’s alternative, a priori estimates, and com-
pactness arguments. We also propose a mixed finite element method and
demonstrate the stability of the scheme. Error estimates are derived in
suitable norms, and numerical experiments are conducted to illustrate
the mechano-chemical coupling and to verify the theoretical rates of
convergence.
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1. Introduction and problem statement

1.1. Scope of the paper

We aim at studying the spreading properties of a system of interacting species when the underlying
medium is of a porous nature and it undergoes elastic deformations. The model we propose has the
potential to deliver quantitative insight on the two-way coupling between the transport of solutes and
poromechanical e!ects in the context of microscopic-macroscopic mechanobiology. Real biological
tissues are conformed by living cells, and volume changes due to cell birth and death onset velocity
"elds and local deformation, eventually driving domain growth [1]. Interconnectivity of the porous
microstructure is in this case su#cient to accommodate $uid $owing locally. The described problem
can be encountered in numerous applications not only related to cell biomechanics, and some of these
are explored in our very recent paper [2] (including traumatic brain injury and calcium dynamics).

From the viewpoint of solvability analysis of partial di!erential equations and/or the theoreti-
cal aspects of "nite element discretisations, the relevant literature contains a few works speci"cally
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targeting the coupling of di!usion in deformable porous media. We mention for instance the classi-
cal works of Showalter [3] and Showalter and Momken [4] which employ the theory of degenerate
equations in Hilbert spaces, or the study of Hadamard well-posedness of parabolic-elliptic systems
governing chemo-poroelasticity with thermal e!ects [5]. More recently, [6] introduces mixed "nite
element schemes and stability analysis for a system of multiple-network poroelasticity, that resembles
themodel problemwe are interested in. Also, in [7] a six-"eld system including temperature dynamics
has been rigorously analysed using linearisation tools, the Banach "xed-point theory and weak com-
pactness, and piecewise continuation in time. As in [6], we also employ the three-"eld formulation
for the Biot consolidation equations introduced in [8] (see also [9]). However in the model we adopt
here, we consider a two-way active transport: the poromechanical deformations a!ect the transport
of the chemical species through advection and also by means of a volume-dependent modi"cation of
the reaction terms; and the solutes’ concentration generate an active stress resulting in a distributed
load depending linearly on the concentration gradients. Let us point out that in a companion paper
[2] we are addressing in more detail the modelling formalisms, we perform a linear stability analysis
to identify suitable ranges for the key coupling parameters, and we give a full set of numerical tests in
2D and 3D.

The coupled system is set up inmixed-primal structure, where the equations of poroelasticity have
amixed formusing displacement, pressure, and a rescaled total pressure, and the advection-di!usion-
reaction system is also set in primal form, solving for the species’ concentrations. Then, we focus on
the semidiscrete in-time formulation, rewriting the resulting scheme equivalently as a "xed-point
equation [10–12], and then, Schauder "xed point theorem [10, 12], combined with Fredholm’s alter-
native [8, 13, 14] and quasi-linear equations theory [11, 15], are applied to establish the solvability of
the introduced formulation. Consequently, the well-known MINI-elements family and continuous
piecewise polynomials are proposed to approximate the three-"eld formulation, whereas Lagrange
elements are introduced to approximate the concentrations. Thus, making use of the discrete inf-
sup condition together with classical inequalities, we obtain the corresponding stability result for our
approximation. The advantage of using this approach is that the stability results are independent of
the Lamé constants of the solid, and this is particularly important to prevent volumetric locking. We
further stress that the main di#culties in the present analysis (which are not present in the literature
cited above) are related to the advective coupling appearing in the advection-reaction-di!usion sys-
tem. In contrast with, e.g. [7, 16], the advecting velocity in our case is that of the solid (instead of the
Darcy velocity), which is not a primary variable in our formulation. This implies that an extra 1/(!t)
appears from the backward Euler time discretisation of the solid velocity, complicating the analysis
of the semidiscrete and fully discrete problems.

The remainder of this work is structured as follows. The governing equations as well as the main
assumptions on the model coe#cients will be stated in what is left of this Section. Then, in Section 2
we derive a weak formulation and include preliminary properties of the mathematical structure of
the problem. Well-posedness of the coupled problem is then analysed also in Section 2, focusing in
the semidiscrete case. We proceed in Section 3 with the introduction of a locking-free "nite element
scheme for the discretisation of the model equations, based on a stabilised formulation from [8] for
the consolidation system, and a conforming method for the advection-di!usion-reaction subsystem.
The convergence of the fully-discrete method is established in Section 4. The numerical veri"cation
of these convergence rates is carried out by means of a simple test presented in Section 5, where we
also give an illustrative example of pattern formation and suppression of spatio-temporal patterning
due to poro-mechanical loading. We close with a discussion on model extensions in Section 6.

1.2. Coupling poroelasticity and advection-di!usion-reaction

Let us consider a piece of soft material as a porous medium composed by amixture of incompressible
grains and interstitial $uid, whose description can be placed in the context of the classical Biot prob-
lem. As in [8, 9], we introduce an auxiliary unknown ψ representing the volumetric part of the total
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stress. In the absence of gravitational forces, and for a given body load b(t) : # → Rd and a mass
source $(t) : # → R, one seeks for each time t ∈ (0, t"nal], the displacements of the porous skeleton,
us(t) : # → Rd, and the pore pressure of the $uid, pf (t) : # → R, such that

(
c0 + α2

λ

)
∂tpf − α

λ
∂tψ − 1

η
div(κ∇pf ) = $ in#× (0, t"nal], (1)

σ = 2µε(us) − ψI, in#× (0, t"nal], (2)

ψ = αpf − λ div us, in#× (0, t"nal], (3)

− div σ = ρb in#× (0, t"nal]. (4)

Here κ(x) is the hydraulic conductivity of the porous medium (possibly anisotropic), ρ is the density
of the solid material, η is the constant viscosity of the interstitial $uid, c0 is the constrained speci"c
storage coe#cient, α is the Biot-Willis consolidation parameter, and µ, λ are the shear and dilation
moduli associated with the constitutive law of the solid structure.

We also consider the propagation of a generic species with concentration w1, reacting with an
additional species with concentration w2. The problem can be written as follows

∂tw1 + ∂tus · ∇w1 − div{D1(x)∇w1} = f (w1,w2, us) in#× (0, t"nal], (5)

∂tw2 + ∂tus · ∇w2 − div{D2(x)∇w2} = g(w1,w2, us) in#× (0, t"nal], (6)

whereD1,D2 are positive de"nite di!usionmatrices (howeverwe do not consider here cross-di!usion
e!ects as in, e.g. [11, 17]). In the well-posedness analysis the reaction kinetics are generic. Neverthe-
less, for sake of "xing ideas and in order to specify the coupling e!ects also through a stability analysis
that will be conducted in [2], they will be chosen as a modi"cation to the classical model from [18]

f (w1,w2, us) = β1(β2 − w1 + w2
1w2) + γ w1 ∂t div us,

g(w1,w2, us) = β1(β3 − w2
1w2) + γ w2 ∂t div us,

where β1,β2,β3, γ are positive model constants. Note that the mechano-chemical feedback (the pro-
cess where mechanical deformation modi"es the reaction-di!usion e!ects) is here assumed only
through advection and an additional reaction term depending on local dilation. The latter term is
here modulated by γ > 0, thus representing a source for both species if the solid volume increases,
otherwise the additional contribution is a sink for both chemicals [1].

The poromechanical deformations are also actively in$uenced bymicroscopic tension generation.
A very simple description is given in terms of active stresses: we assume that the total Cauchy stress
contains a passive and an active component, where the passive part is as in (2) and

σ total = σ + σ act, (7)

where the active stress operates primarily on a given, constant direction k, and its intensity depends
on a scalar "eld r = r(w1,w2) and on a positive constant τ , to be speci"ed later on (see, e.g. [19])

σ act = −τ rk ⊗ k. (8)

In summary, the coupled system reads

− div(2µε(us) − ψI + σ act) = ρb in#× (0, t"nal],(
c0 + α2

λ

)
∂tpf − α

λ
∂tψ − 1

η
div(κ∇pf ) = $ in#× (0, t"nal],

ψ − αpf + λ div us = 0 in#× (0, t"nal],
∂tw1 + ∂tus · ∇w1 − div(D1(x)∇w1) = f (w1,w2, us) in#× (0, t"nal],
∂tw2 + ∂tus · ∇w2 − div(D2(x)∇w2) = g(w1,w2, us) in#× (0, t"nal],

(9)
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which we endow with appropriate initial data at rest

w1(0) = w1,0, w2(0) = w2,0, us(0) = 0, pf (0) = 0, ψ(0) = 0 in#× {0}, (10)

and boundary conditions in the following manner

us = 0 and
κ

η
∇pf · n = 0 on . × (0, t"nal], (11)

[2µε(us) − ψ I + σ act]n = 0 and pf = 0 on/ × (0, t"nal], (12)

D1(x)∇w1 · n = 0 and D2(x)∇w2 · n = 0 on ∂#× (0, t"nal], (13)

where the boundary ∂# = . ∪/ is disjointly split into. and/ where we prescribe clamped bound-
aries and zero $uid normal $uxes; and zero (total) traction together with constant $uid pressure,
respectively. Moreover, zero concentrations normal $uxes are prescribed on ∂#. We point out that,
if we would like to start with a model in terms of the divergence (div(wi∂tus) instead of ∂tus · ∇wi
in (5)–(6), i ∈ {1, 2}), we need to assume zero total $ux (including the advective term, see, e.g. [11]).
Homogeneity of the boundary conditions is only assumed to simplify the exposition of the subsequent
analysis.

2. Well-posedness analysis

2.1. Weak formulation and a semi-discrete form

Let us multiply (9) by adequate test functions and integrate by parts (in space) whenever appropri-
ate. Incorporating the boundary conditions (11)–(12) as well as the de"nition of the total stress (7),
we end up with the following variational problem: For a given t> 0, "nd us(t) ∈ H1

.(#), pf (t) ∈
H1
/(#),ψ(t) ∈ L2(#),w1(t) ∈ H1(#),w2(t) ∈ H1(#) such that

2µ
∫

#
ε(us) : ε(vs) −

∫

#
ψ div vs =

∫

#
ρb · vs+

∫

#
τ rk ⊗ k : ε(vs) ∀ vs ∈ H1

.(#),
(
c0 + α2

λ

)∫

#
∂tpf qf + 1

η

∫

#
κ∇pf · ∇qf − α

λ

∫

#
∂tψqf =

∫

#
$qf ∀ qf ∈ H1

/(#),

−
∫

#
φ div us + α

λ

∫

#
pfφ − 1

λ

∫

#
ψφ = 0 ∀ φ ∈ L2(#),

∫

#
∂tw1s1 +

∫

#
D1∇w1 · ∇s1 +

∫

#
(∂tus · ∇w1)s1 =

∫

#
f (w1,w2, us) s1 ∀ s1 ∈ H1(#),

∫

#
∂tw2s2 +

∫

#
D2∇w2 · ∇s2 +

∫

#
(∂tus · ∇w2)s2 =

∫

#
g(w1,w2, us) s2 ∀ s2 ∈ H1(#).

(14)

Next, let us discretise the time interval (0, t"nal] into equispaced points tn = n!t, and use the follow-
ing general notation for the "rst order backward di!erence!tδtXn+1 := Xn+1 − Xn. In this way, we
can write a semidiscrete form of (14): From initial data us,0, pf ,0,ψ0,w0

1,w
0
2 and for n = 1, . . ., "nd

us,n+1 ∈ H1
.(#), pf ,n+1 ∈ H1

/(#),ψn+1 ∈ L2(#),wn+1
1 ∈ H1(#),wn+1

2 ∈ H1(#) such that

a1(us,n+1, vs) + b1(vs,ψn+1) = Frn+1(vs) ∀ vs ∈ H1
.(#), (15)

ã2(pf ,n+1, qf ) + a2(pf ,n+1, qf ) − b̃2(qf ,ψn+1) = G$n+1(qf ) ∀ qf ∈ H1
/(#), (16)

b1(us,n+1,φ) + b2(pf ,n+1,φ) − a3(ψn+1,φ) = 0 ∀ φ ∈ L2(#), (17)

ã4(wn+1
1 , s1) + a4(wn+1

1 , s1) + c(wn+1
1 , s1, us,n+1) = Jf n+1(s1) ∀ s1 ∈ H1(#), (18)

ã5(wn+1
2 , s2) + a5(wn+1

2 , s2) + c(wn+1
2 , s2, us,n+1) = Jgn+1(s2) ∀ s2 ∈ H1(#), (19)
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where the bilinear forms a1 : H1
.(#) × H1

.(#) → R, a2 : H1
/(#) × H1

/(#) → R, a3 : L2(#) ×
L2(#) → R, a4, a5 : H1(#) × H1(#) → R, b1 : H1

.(#) × L2(#) → R, b2, b̃2 : H1
/(#) × L2(#) →

R, the trilinear form c : H1(#) × H1(#) × H1
.(#) → R, and linear functionals Fr : H1

.(#) →
R (for r known), G$ : H1

/(#) → R, Jf , Jg : H1(#) → R (for known f and known g), satisfy the
following speci"cations

a1(us,n+1, vs) := 2µ
∫

#
ε(us,n+1) : ε(vs), b1(vs,φ) := −

∫
# φ div v

s, b2(pf ,n+1,φ) := α
λ

∫
# pf ,n+1φ,

ã2(pf ,n+1, qf ) :=
(
c0 + α2

λ

)∫

#
δtpf ,n+1qf , a2(pf ,n+1, qf ) := 1

η

∫
# κ∇pf ,n+1 · ∇qf ,

b̃2(qf ,ψn+1) := α

λ

∫

#
δtψ

n+1qf , a3(ψn+1,φ) := 1
λ

∫
# ψ

n+1φ,

ã4(wn+1
1 , s1) :=

∫

#
δtwn+1

1 s1, a4(wn+1
1 , s1) :=

∫
# D1(x)∇wn+1

1 · ∇s1,

ã5(wn+1
2 , s2) :=

∫
# δtw

n+1
2 s2, a5(wn+1

2 , s2) :=
∫
# D2(x)∇wn+1

2 · ∇s2,

c(w, s, us,n+1) :=
∫

#
(δtus,n+1 · ∇w)s, Frn+1(vs) := ρ

∫
# bn+1 · vs + τ

∫
# rn+1k ⊗ k : ε(vs),

G$n+1(qf ) :=
∫

#
$n+1qf , Jf n+1(s1) :=

∫
# f n+1s1, Jgn+1 (s2) :=

∫
# gn+1s2.

(20)

2.2. Preliminaries

Wewill consider that the initial data (10) are nonnegative and regular enough. Moreover, throughout
the text we will assume that the anisotropic permeability κ(x) and the di!usionmatricesD1(x),D2(x)
are uniformly bounded and positive de"nite in#. The latter means that, there exist positive constants
κ1, κ2, and Dmin

i ,Dmax
i , i ∈ {1, 2}, such that

κ1|w|2 ≤ wtκ(x)w ≤ κ2|w|2, and Dmin
i |w|2 ≤ wtDi(x)w ≤ Dmax

i |w|2 ∀ w ∈ Rd, ∀ x ∈ #.

Also, for a "xed us, the reaction kinetics f (w1,w2, ·), g(w1,w2, ·) satisfy the growth conditions

|f (w1,w2, ·)| ≤ C(1 + |w1| + |w2|), |g(w1,w2, ·)| ≤ C(1 + |w1| + |w2|) forw1,w2 ≥ 0,
|m(w1,w2, ·) − m(w̃1, w̃2, ·)| ≤ C(|w1 − w̃1| + |w2 − w̃2|) form = f , g,
f (w1,w2, ·) = f0 (≥ 0) and g(w1,w2, ·) = g0 (≥ 0) if w1 ≤ 0 orw2 ≤ 0,

(21)
and given w1, w2 ∈ R, the scalar "eld r(w1,w2) de"ned in (8) is such that

|r(w1,w2)| ≤ |w1| + |w2|, |r(w1,w2) − r(w̃1, w̃2)| ≤ C(|w1 − w̃1| + |w2 − w̃2|). (22)

In addition, according to [8], the terms in (15)–(19) ful"l the following continuity bounds

|a1(us, vs)| ≤ 2µCk,2‖us‖1,#‖vs‖1,#, |a2(pf , qf )| ≤ κ2
η ‖pf ‖1,#‖qf ‖1,#,

|a3(ψ ,φ)| ≤ λ−1‖ψ‖0,#‖φ‖0,#, |a4(w1, s1)| ≤ Dmax
1 ‖w1‖1,#‖s1‖1,#,

|a5(w2, s2)| ≤ Dmax
2 ‖w2‖1,#‖s2‖1,#, |b1(vs,φ)| ≤

√
d‖vs‖1,#‖φ‖0,#,

|b2(qf ,φ)| ≤ αλ−1‖qf ‖1,#‖φ‖0,#, |Fr(vs)| ≤ ρ‖b‖0,#‖vs‖0,# + τ
√
Ck,2‖r‖0,#‖vs‖1,#,

|G$(qf )| ≤ ‖$‖0,#‖qf ‖0,#, |Jf (s1)| ≤ ‖f ‖0,#‖s1‖0,#, |Jg(s2)| ≤ ‖g‖0,#‖s2‖0,#,
(23)

for all us, vs ∈ H1
.(#), pf , qf ∈ H1

/(#), w1,w2, s1, s2 ∈ H1(#), ψ ,φ ∈ L2(#). We also have the
following coercivity and positivity bounds

a1(vs, vs) ≥ 2µCk,1‖vs‖21,#, a2(qf , qf )| ≥
κ1cp
η

‖qf ‖21,#, a3(φ,φ) = λ−1‖φ‖20,#,

a4(s1, s1) ≥ Dmin
1 |s1|21,#, a5(s2, s2) ≥ Dmin

2 |s2|21,#, (24)
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for all vs ∈ H1
.(#), φ ∈ L2(#), s1, s2 ∈ H1(#), qf ∈ H1

/(#), where above Ck,1 and Ck,2 are the
positive constants satisfying

Ck,1‖us,n+1‖21,# ≤ ‖ε(us,n+1)‖20,# ≤ Ck,2‖us,n+1‖21,#,

and cp is the Poincaré constant. Moreover, the bilinear form b1 satis"es the inf-sup condition (see,
e.g. [20]): For every φ ∈ L2(#), there exists β > 0 such that

sup
vs∈H1

.(#)

b1(vs,φ)

‖vs‖1,#
≥ β‖φ‖0,#. (25)

Finally, we recall an important discrete identity and introduce the discrete-in-time norm

∫

#
Xn+1δtXn+1 = 1

2
δt‖Xn+1‖2 + 1

2
!t‖δtXn+1‖2, ‖X‖2

$2(V)
:= !t

n∑

m=0
‖Xm+1‖2V , (26)

respectively, which will be useful for the subsequent analysis.

2.3. Unique solvability of uncoupled ADR and poroelasticity problems

As in [11], we de"ne the following adequate set which will be used frequently in our subsequent
analysis, particularly in "xed point analysis: For i = 1, 2 and ∀ t = tn, n = 0, 1, . . .N let

S := D × D, where D := {wi(x, ·) ∈ L2(#) : 0 ≤ wi(x, tn) ≤ e−θ tnM for a.e. x ∈ #},

and whereM is a constant that satis"esM ≥ sup{‖w1,0‖∞,# , ‖w2,0‖∞,#}, and θ is a positive constant
to be speci"ed later. From system (15)–(19) we then de"ne two uncoupled subproblems. For a given
concentration pair (ŵn+1

1 , ŵn+1
2 ) ∈ S , "nd a solution pair (wn+1

1 ,wn+1
2 ) ∈ [H1(#)]2 of the following

uncoupled advection-di!usion-reaction (ADR) system:

ã4(wn+1
1 , s1) + a4(wn+1

1 , s1) + c(wn+1
1 , s1, us,n+1) = Jf n+1(s1) ∀ s1 ∈ H1(#),

ã5(wn+1
2 , s2) + a5(wn+1

2 , s2) + c(wn+1
2 , s2, us,n+1) = Jgn+1(s2) ∀ s2 ∈ H1(#). (27)

In the above system, us,n+1 is the solution of the following uncoupled poroelastic problem:

a1(us,n+1, vs) + b1(vs,ψn+1) = Fr̂n+1(vs) ∀ vs ∈ H1
.(#),

ã2(pf ,n+1, qf ) + a2(pf ,n+1, qf ) − b̃2(qf ,ψn+1) = G$n+1(qf ) ∀ qf ∈ H1
/(#),

b1(us,n+1,φ) + b2(pf ,n+1,φ) − a3(ψn+1,φ) = 0 ∀ φ ∈ L2(#),
(28)

for given r̂n+1 := r(ŵn+1
1 , ŵn+1

2 ).
In order to address the unique solvability of the semi-discrete system (15)–(19), "rst we need to

show that the uncoupled problems (27) and (28) are well-posed. This is carried out employing the
Fredholm alternative approach, and classical results commonly used for showing the well-posedness
of elliptic/parabolic equations.

Lemma 2.1: Assume that (ŵn+1
1 , ŵn+1

2 ) ∈ S . Then problem (28) has a unique solution

(us,n+1, pf ,n+1,ψn+1) ∈ V := H1
.(#) × H1

/(#) × L2(#).

Proof: The main ideas are borrowed from [8], which focuses on steady poromechanics, but pos-
sessing a similar structure to (28). In view of putting the formulation in operator form (amenable
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for analysis through the Fredholm alternative) we de"ne, for /u = (us,n+1, pf ,n+1,ψn+1) ∈ V, /v =
(vs, qf ,φ) ∈ V, the operators

〈A(/u), /v〉 : = a1(us,n+1, vs) + b1(vs,ψn+1) − b1(us,n+1,φ) + ã2(pf ,n+1, qf )

+ a2(pf ,n+1, qf ) + a3(ψn+1,φ),

〈K(/u), /v〉 : = −b2(pf ,n+1,φ) − b̃2(qf ,ψn+1),

〈F , /v〉 : = Fr̂n+1(vs) + G$n+1(qf ).

As per the Fredholm alternative, the solvability of the operator problem (A + K)/u = F (which
implies solvability of the uncoupled problem (28)), holds ifK is compact,A is invertible andA + K
is injective.

Step 1.K is compact:De"ne an operatorB2 : H1(#) → L2(#) such that 〈B2(qf ),φ〉 := b2(qf ,φ),
that is, B2qf = (αλ I) ◦ ic where ic : H1(#) → L2(#) is compact using Rellich-Kondrachov Theorem
and I : L2(#) → L2(#) is the identity map. It implies that B2 is compact, so is B∗

2. Note thatK(/u) =
(0,B2(pf ,n+1),−B∗

2(δtψ
n+1)). Thus,K is compact.

Step 2. A is invertible and (A + K) is injective: Assume V := H1
.(#), Q := H1

/(#) and Z :=
L2(#). The invertibility ofA is equivalent to the existence of a unique solution to the operator prob-
lem: Given L := (L1,L2,L3) ∈ V, "nd /u ∈ V such that A/u = L, which is equivalent to the two
uncoupled problems:

• Find (us,n+1,ψn+1) ∈ V × Z such that

a1(us,n+1, vs) + b1(vs,ψn+1) = L1(vs) ∀ vs ∈ V,

b1(us,n+1,φ) − a3(ψn+1,φ) = L3(φ) ∀ φ ∈ Z, (29)

• Find pf ,n+1 ∈ Q such that

ã2(pf ,n+1, qf ) + a2(pf ,n+1, qf ) = L2(qf ) ∀ qf ∈ Q. (30)

The continuity and coercivity of the bilinear forms a1(·, ·) in combination with the inf-sup condition
for b1(·, ·) and the semi-positive de"niteness of a3(·, ·), ensure the unique solvability of (29) (see [21]).
Moreover, in view of the coercivity of a2(·, ·) and the classical result from, e.g. [22, Theorem 11.1.1,
Remark 11.1.1], the existence of a unique solution to (30) can be easily shown. ThereforeA is invert-
ible. Furthermore, analogously to the proof of [8, Lemma 2.4], it is straightforward to show that
A + K is one-to-one, which completes the proof. !

The following two results focus on providing the continuous dependence on data for the unique
solution of problem (28). We begin with a preliminary estimate.

Lemma 2.2: Assume that (us,n+1, pf ,n+1,ψn+1) ∈ V is the unique solution given by Lemma 2.1. Then,
there exists C2 > 0, independent of!t and λ, such that, for each n,

µCk,1
2

‖us,n+1‖21,# + c0
2

‖pf ,n+1‖20,# +
κ1cp!t
2η

n∑

m=0
‖pf ,m+1‖21,#

≤ C2

{

‖us,0‖21,# + ‖pf ,0‖20,# + ‖ψ0‖20,# +
n∑

m=0
‖ψm+1‖20,# +

n∑

m=0
‖pf ,m+1‖20,#

+
n∑

m=0
‖r̂m+1‖20,# +

n∑

m=0
‖bm+1‖20,# +!t

n∑

m=0

∥∥$m+1∥∥2
0,#

}

. (31)
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Proof: We begin by taking vs = δtus,n+1 in the "rst row of (28), and then applying Cauchy-Schwarz
and Young inequalities, to get

µδt‖ε(us,n+1)‖20,# + µCk,1!t‖δtus,n+1‖21,# ≤ 1
2δ1

‖ψn+1‖20,# + δ1
2

‖δtus,n+1‖21,#

+ τ 2

2δ2
‖r̂n+1‖20,# + Ck,2δ2

2
‖δtus,n+1‖21,# + ρ2

2δ3
‖bn+1‖20,# + δ3

2
‖δtus,n+1‖21,#.

Next, de"ning δ1 := µCk,1!t
2 , δ2 := µCk,1!t

2Ck,2
and δ3 := µCk,1!t

2 , and then, multiplying the resulting
inequality by!t and summing over n, we "nally obtain

µCk,1‖us,n+1‖21,# + µCk,1!t2

4

n∑

m=0
‖δtus,m+1‖21,#

≤ C1

{

‖us,0‖21,# +
n∑

m=0
‖ψm+1‖20,# +

n∑

m=0
‖r̂m+1‖20,# +

n∑

m=0
‖bm+1‖20,#

}

, (32)

where C1 is a constant depending on µ,Ck,1,Ck,2, ρ, and τ . On the other hand, by taking qf = pf ,n+1

and φ = δtψ
n+1 in the second and third equation of (28), respectively, we get

1
2λ
δt‖ψn+1‖20,# + !t

2λ
‖δtψn+1‖20,# + 1

2

(
c0 + α2

λ

)(
δt‖pf ,n+1‖20,# +!t‖δtpf ,n+1‖20,#

)

+ κ1
η

|pf ,n+1|21,#

≤ 2α
λ

‖pf ,n+1‖0,#‖δtψn+1‖0,# +
∥∥$n+1∥∥

0,# ‖pf ,n+1‖0,# −
∫

#
δtψ

n+1div us,n+1. (33)

Rewriting the "rst term on the right-hand side as

2α
λ

‖pf ,n+1‖0,#‖δtψn+1‖0,# = 2
(

1√
λ

‖δtψn+1‖0,#
)(

α√
λ

‖pf ,n+1‖0,#
)
,

and then employing the Young’s inequality in the "rst two terms on the right-hand side of (33), we
obtain

1
2λ
δt‖ψn+1‖20,# + !t

2λ
‖δtψn+1‖20,# + 1

2

(
c0 + α2

λ

)(
δt‖pf ,n+1‖20,# +!t‖δtpf ,n+1‖20,#

)

+ κ1
η

|pf ,n+1|21,#

≤ δ1
λ

‖δtψn+1‖20,# + α2

λδ1
‖pf ,n+1‖20,# + 1

2δ2

∥∥$n+1∥∥2
0,# + δ2

2
‖pf ,n+1‖20,# −

∫

#
δtψ

n+1div us,n+1.

Now, choosing δ1 := !t
2 and δ2 :=

κ1cp
η , and then, multiplying the resulting inequality by !t and

summing over n, we deduce the following preliminar bound

1
2λ

‖ψn+1‖20,# + 1
2

(
c0 + α2

λ

)(
‖pf ,n+1‖20,# +!t2

n∑

m=0
‖δtpf ,m+1‖20,#

)
+
κ1cp!t
2η

n∑

m=0
‖pf ,m+1‖21,#

≤ 1
2λ

‖ψ0‖20,# + 1
2

(
c0 + α2

λ

)
‖pf ,0‖20,# + 2α2

λ

n∑

m=0
‖pf ,m+1‖20,# + η!t

2κ1cp

n∑

m=0

∥∥$m+1∥∥2
0,#
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−!t
n∑

m=0

∫

#
δtψ

m+1div us,m+1. (34)

Finally, for the last term on the right-hand side of (34), we proceed similarly to [23, Section 9],
applying summation by parts as well as the initial conditions (10), to obtain that

−!t
n∑

m=0

∫

#
δtψ

m+1div us,m+1 = −
∫

#
ψn+1div us,n+1 +!t

n−1∑

m=0

∫

#
ψm+1δtdiv us,m+1

≤ 1
2δ3

‖ψn+1‖20,# + δ3
2

‖us,n+1‖21,# + 1
2δ4

!t
n−1∑

m=0
‖ψm+1‖20,# + δ4

2
!t

n−1∑

m=0
‖δtus,m+1‖21,#,

and then, taking δ3 := µCk,1 and δ4 := µCk,1!t
2 , we arrive at the following estimate

1
2λ

‖ψn+1‖20,# + 1
2

(
c0 + α2

λ

)(
‖pf ,n+1‖20,# +!t2

n∑

m=0
‖δtpf ,m+1‖20,#

)
+
κ1cp!t
2η

n∑

m=0
‖pf ,m+1‖21,#

≤ 1
2λ

‖ψ0‖20,# + 1
2

(
c0 + α2

λ

)
‖pf ,0‖20,# + 2α2

λ

n∑

m=0
‖pf ,m+1‖20,# + η!t

2κ1cp

n∑

m=0

∥∥$m+1∥∥2
0,#

+ 1
2µCk,1

‖ψn+1‖20,# + µCk,1
2

‖us,n+1‖21,# + 1
µCk,1

n−1∑

m=0
‖ψm+1‖20,#

+ µCk,1!t2

4

n−1∑

m=0
‖δtus,m+1‖21,#. (35)

Finally, the result follows after adding (32) and (35), and taking

C2 := max
{
C1, c0 + 1

2λ
,
1
2

(
c0 + α2

λ

)
, c0 + 2α2

λ
,
η

2κ1cp
,

2
µCk,1

}
,

where C2 must be understood as a constant independent of λ, when λ goes to in"nity. !

Lemma 2.3: Assume that (us,n+1, pf ,n+1,ψn+1) ∈ V is the unique solution given by Lemma 2.1. Then,
there exists C> 0, independent of!t and λ, such that for each n,

‖us,n+1‖1,# +
√
c0‖pf ,n+1‖0,# + ‖ψn+1‖0,# + ‖pf ‖l2(H1(#))

≤ C√exp
{
‖us,0‖1,# + ‖pf ,0‖0,# + ‖ψ0‖0,#

+
n∑

m=0
‖bm+1‖0,# + ‖$‖$2(L2(#)) +

n∑

m=0
‖r̂m+1‖0,#

}

. (36)

Proof: Having established the bound given by (31), it only remains to obtain an upper bound for
‖ψn+1‖0,#, independent of λ. Thus, taking φ = ψn+1 in the inf-sup condition (25), and using the
"rst row of (28) and the continuity of a1, we easily obtain

β‖ψn+1‖0,# ≤ sup
vs∈V

b1(vs,ψn+1)

‖vs‖1,#
= sup

vs∈V

−a1(us,n+1, vs) + Fr̂n+1(vs)
‖vs‖1,#
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≤ 2µCk,2‖ε(us,n+1)‖0,# +
√
Ck,2τ‖r̂n+1‖0,# + ρ‖bn+1‖0,#,

or, equivalently,

‖ψn+1‖20,# ≤ C3
{
‖us,n+1‖21,# + ‖r̂n+1‖20,# + ‖bn+1‖20,#

}
, (37)

whereC3 is a constant depending on β ,Ck,1,Ck,2,µ, τ and ρ. In this way, from (31) and (37) we "nally
obtain an estimate concerning the stability of the poroelasticity problem

‖us,n+1‖21,# + c0‖pf ,n+1‖20,# + ‖ψn+1‖20,# +!t
n∑

m=0
‖pf ,m+1‖21,#

≤ C4

{

‖us,0‖21,# + ‖pf ,0‖20,# + ‖ψ0‖20,# +
n∑

m=0
‖ψm+1‖20,# +

n∑

m=0
‖pf ,m+1‖20,#

+
n∑

m=0
‖r̂m+1‖20,# +

n∑

m=0
‖bm+1‖20,# +!t

n∑

m=0

∥∥$m+1∥∥2
0,#

}

+ C3
{
‖r̂n+1‖20,# + ‖bn+1‖20,#

}
.

(38)

Finally, the stability result (36) follows by applying Gronwall’s inequality to (38). !

Lemma2.4: For any us,n+1 ∈ V, the uncoupled ADR system (27) has a unique solution.Moreover there
exists C> 0, independent of!t, such that for each n,

‖wn+1
1 ‖0,# + ‖wn+1

2 ‖0,# + ‖∇w1‖$2(L2(#)) + ‖∇w2‖$2(L2(#))

≤ C√exp
{
n!t + ‖w0

1‖0,# + ‖w0
2‖0,#

}
. (39)

Proof: Note that for each n, the uncoupledADR equations constitute a semilinear elliptic system; and
owing to the uniform boundedness of the matricesDi(x), i = 1, 2 together with the growth condition
assumed for f, g; the problem (27) is uniquely solvable (see for instance, [15]). On the other hand, for
the continuous dependence, we begin by taking s1 = wn+1

1 in the "rst equation of (27), which yields
∫

#
δtwn+1

1 wn+1
1 +

∫

#
D1(x)∇wn+1

1 · ∇wn+1
1 +

∫

#
(δtus,n+1 · ∇wn+1

1 )wn+1
1 =

∫

#
f n+1wn+1

1 ,

and then, recalling that
∫

#
(δtus,n+1 · ∇wn+1

1 )wn+1
1 = −1

2

∫

#
div (δtus,n+1)(wn+1

1 )2, (40)

we can apply classical Cauchy-Schwarz inequality, to obtain

1
2
δt‖wn+1

1 ‖20,# + 1
2
!t‖δtwn+1

1 ‖20,# + Dmin
1 ‖∇wn+1

1 ‖20,#

≤ 1
2
‖δtus,n+1‖1,∞,#‖wn+1

1 ‖20,# + ‖f n+1‖0,#‖wn+1
1 ‖0,#.

Under the assumption that us,n+1, us,n are uniformly bounded in W1,∞(#), and after applying
Young’s inequality, we deduce the following result

1
2
δt‖wn+1

1 ‖20,# + 1
2
!t‖δtwn+1

1 ‖20,# + Dmin
1 ‖∇wn+1

1 ‖20,#
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≤ C1
2!t

‖wn+1
1 ‖20,# + 1

2
‖f n+1‖20,# + 1

2
‖wn+1

1 ‖20,#.

Finally, a preliminary stability result follows by summing over n and multiplying by!t, which is

1
2
‖wn+1

1 ‖20,# + 1
2
!t2

n∑

m=0
‖δtwm+1

1 ‖20,# + Dmin
1 !t

n∑

m=0
‖∇wm+1

1 ‖20,#

≤ 1
2
‖w0

1‖20,# + 1
2
(C1 +!t)

n∑

m=0
‖wm+1

1 ‖20,# + !t
2

n∑

m=0
‖f m+1‖20,#. (41)

In much the same way as above, we obtain a stability result for ‖wn+1
2 ‖0,#

1
2
‖wn+1

2 ‖20,# + 1
2
!t2

n∑

m=0
‖δtwm+1

2 ‖20,# +!t
n∑

m=0
‖∇wm+1

2 ‖20,#

≤ 1
2
‖w0

2‖20,# + 1
2
(C1 +!t)

n∑

m=0
‖wm+1

2 ‖20,# + !t
2

n∑

m=0
‖gm+1‖20,#, (42)

and then, from (41) and (42), we get a stability bound for the uncoupled problem (27)

1
2
‖wn+1

1 ‖20,# + 1
2
‖wn+1

2 ‖20,# + Dmin!t
n∑

m=0
(‖∇wm+1

1 ‖20,# + ‖∇wm+1
2 ‖20,#)

≤ C2
{
n!t + ‖w0

1‖20,# + ‖w0
2‖20,# +

n∑

m=0

(
‖wm+1

1 ‖20,# + ‖wm+1
2 ‖20,#

)}
, (43)

where we have used the growth condition on f and g, and Dmin := min{Dmin
1 ,Dmin

2 }. Finally, the
stability of (27) given by (39) follows from an application of Gronwall’s inequality to (43). !

2.4. Existence of aweak solution of fully coupled system

The demonstration of the existence of a weak solution of fully coupled semi-discrete system (15)–(19)
relies on "xed-point arguments. The structure of the proof requires to de"ne the operatorT : S → S ,
that for each n gives T(ŵn+1

1 , ŵn+1
2 ) = (wn+1

1 ,wn+1
2 ), for a "xed pair (ŵn+1

1 , ŵn+1
2 ) ∈ S , and where

(wn+1
1 ,wn+1

2 ) ∈ [H1(#)]2 is the solution of (46)–(47) with a given displacement us,n+1 (that is, the
solution of the uncoupled poroelastic problem (28)). Our objective is to show that T has a "xed point,
and as a consequence implying that the system (15)–(19) possesses a weak solution. This is framed
appealing to generalised Schauder’s "xed-point theorem, stated as

Lemma 2.5: Let M be a closed convex set in a Banach space X and assume that L : M → M is a
continuous mapping such that L(M) is a relatively compact subset of M. Then L has a !xed point.

In the context of the present problem, it is evident that S is a closed, bounded and convex subset
of the Banach space [L2(#)]2, so we further need to show that T is a continuous self-map and that
T(S) is relatively compact in S. We dedicate the rest of this section to detail a proof of these essential
steps, and we also collect other well-known required ingredients.

Before establishing that T is a self-map, we proceed to de"ne auxiliary functions mw1 =
mw1(x),mw2 = mw2(x) in such a way that the solutions of the uncoupled ADR problem can be
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expanded as

w1 = eθ tmw1 ,w2 = eθ tmw2 ,

for some constant θ > 0. Then, since the expansion coe#cientsmw1 ,mw2 are time-independent, it is
readily seen that w1,w2 will also satisfy the auxiliary system

∂tw1 − div (D1(x)∇w1) + ∂tus · ∇w1 = −θw1 + e−θ tf (eθ tw1, eθ tw2),

∂tw2 − div (D2(x)∇w2) + ∂tus · ∇w2 = −θw2 + e−θ tg(eθ tw1, eθ tw2),

whose semi-discrete, variational counterpart is: Find wn+1
1 ,wn+1

2 such that
∫

#
δtwn+1

1 s1 +
∫

#
D1(x)∇wn+1

1 · ∇s1 +
∫

#
(δtus,n+1 · ∇wn+1

1 )s1

= −θ
∫

#
wn+1
1 s1 +

∫

#
e−θ tn+1 f (eθ tn+1wn+1

1 , eθ tn+1wn+1
2 )s1 ∀s1 ∈ H1(#), (44)

∫

#
δtwn+1

2 s2 +
∫

#
D2(x)∇wn+1

2 · ∇s2 +
∫

#
(δtus,n+1 · ∇wn+1

2 )s2

= −θ
∫

#
wn+1
2 s2 +

∫

#
e−θ tn+1g(eθ tn+1wn+1

1 , eθ tn+1wn+1
2 )s2 ∀s2 ∈ H1(#). (45)

The system can be equivalently stated in the form

ã4(wn+1
1 , s1) + a4(wn+1

1 , s1) + c(wn+1
1 , s1, us,n+1) = J̃f n+1(s1) ∀s1 ∈ H1(#), (46)

ã5(wn+1
2 , s2) + a5(wn+1

2 , s2) + c(wn+1
2 , s2, us,n+1) = J̃gn+1(s2) ∀s2 ∈ H1(#), (47)

where

J̃f n+1(s1) = −θ
∫

#
wn+1
1 s1 +

∫

#
e−θ tn+1 f (eθ tn+1wn+1

1 , eθ tn+1wn+1
2 )s1,

J̃gn+1(s2) = −θ
∫

#
wn+1
2 s2 +

∫

#
e−θ tn+1g(eθ tn+1wn+1

1 , eθ tn+1wn+1
2 )s2.

Lemma 2.6: The operator T maps S into itself.

Proof: For given (ŵn+1
1 , ŵn+1

2 ) ∈ S , we need to show that 0 ≤ wn+1
1 ,wn+1

2 ≤ e−θ tn+1M for each
n = 0, 1, . . . ,N where (wn+1

1 ,wn+1
2 ) = T(ŵn+1

1 , ŵn+1
2 ). The proof is based on induction and contra-

diction arguments. Given w1,0 ≥ 0, assume that wn
1 ≥ 0. We then suppose that wn+1

1 < 0. Setting
s1 = −(wn+1

1 )− = −max{−wn+1
1 , 0} in (44) gives us

−
∫

#

(
wn+1
1 − wn

1
!t

)

(wn+1
1 )− −

∫

#
D1(x)∇wn+1

1 · ∇(wn+1
1 )−

−
∫

#

(
us,n+1 − us,n

!t
· ∇wn+1

1

)
(wn+1

1 )−

= θ

∫

#
wn+1
1 (wn+1

1 )− −
∫

#
e−θ tn+1 f n+1(wn+1

1 )−,

1
!t

∫

#
((wn+1

1 )−)2 + Dmin
1

∫

#
(∇(wn+1

1 )−)2 +
∫

#

(
us,n+1 − us,n

2!t

)
· ∇((wn+1

1 )−)2
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+ 1
!t

∫

#
wn
1(w

n+1
1 )−

= −θ
∫

#
((wn+1

1 )−)2 −
∫

#
e−θ tn+1 f n+1(wn+1

1 )−,

and therefore
1
!t

∫

#
((wn+1

1 )−)2 + Dmin
1

∫

#
(∇(wn+1

1 )−)2

−
∫

#

(
div (us,n+1 − us,n)

2!t

)
((wn+1

1 )−)2 + θ

∫

#
((wn+1

1 )−)2

= − 1
!t

∫

#
wn
1(w

n+1
1 )− −

∫

#
e−θ tn+1(wn+1

1 )−f0. (48)

Sincewn
1 and f0 are non-negative, the right-hand side of (48) is non-positive. For θ ≥ ‖us,n+1−us,n‖1,∞,#

2!t
(which is legitimate as can be seen at the end of the proof) along with positive de"niteness of D1(x)
throughout # implies that

∫
#((wn+1

1 )−)2 ≤ 0; and hence (wn+1
1 )− = 0. However (wn+1

1 )− > 0,
which contradicts our initial assumption. Proceeding then by induction we obtain that wn+1

1 ≥ 0
for each n. The property for w2 can be derived in analogous way.

The other part of the inequality (that is,wn
1 ,w

n
2 ≤ e−θ tnM for each n) follows the same lines. Given

w1,0 ≤ M we assume that wn
1 ≤ e−θ tnM ≤ e−θ tn+1M, and we further suppose that wn+1

1 > e−θ tn+1M.
Choosing s1 = sn+1

1 := (wn+1
1 − e−θ tn+1M)+ in (46), we can readily obtain

1
!t

∫

#
(wn+1

1 − wn
1)s

n+1
1 +

∫

#
D1(x)∇wn+1

1 · ∇sn+1
1 +

∫

#

(us,n+1 − us,n)
!t

· ∇wn+1
1 sn+1

1

= −θ
∫

#
wn+1
1 sn+1

1 +
∫

#
e−θ tn+1 f n+1sn+1

1 ,

which implies that

1
!t

∫

#
(sn+1
1 )2 + Dmin

1

∫

#
|∇sn+1

1 |2 −
∫

#

div (us,n+1 − us,n)
2!t

(sn+1
1 )2 −

∫

#

(wn
1 − e−θ tn+1M)

!t
sn+1
1

≤ −θ
∫

#
(sn+1
1 )2 − θ

∫

#
e−θ tn+1 f n+1sn+1

1 .

Using again that Dmin
1 > 0 and the growth condition of f and wn

1 ≤ e−θ tn+1M, we can assert that

1
!t

∫

#
(sn+1
1 )2 +

∫

#

(
θ − ‖us,n+1 − us,n‖1,∞,#

2!t

)
(sn+1
1 )2 + θ

∫

#
e−θ tn+1Msn+1

1

≤ −θ
∫

#
e−θ tn+1 f n+1sn+1

1 ≤ Ce−θ tn+1

∫

#
(1 + |wn+1

1 | + |wn+1
2 |)sn+1

1

≤ Ce−θ tn+1

∫

#
(|sn+1

1 | + |sn+1
2 | + (1 + 2e−θ tn+1M))sn+1

1

≤ C1

∫

#
(e−θ tn+1Msn+1

1 + (sn+1
1 )2 + (sn+1

2 )2),

and hence, after denoting A(u,!t) = ‖us,n+1−us,n‖1,∞,#
2!t , we can write the bounds

1
!t

‖sn+1
1 ‖20,#+(θ −A(u,!t) −C1)‖sn+1

1 ‖20,# +(θ−C1)

∫

#
e−θ tn+1Msn+1

1 −C1‖sn+1
2 ‖20,# ≤ 0, (49)
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1
!t

‖sn+1
2 ‖20,#+(θ−A(u,!t) − C2)‖sn+1

2 ‖20,#+(θ − C2)

∫

#
e−θ tn+1Msn+1

2 −C2‖sn+1
1 ‖20,# ≤ 0. (50)

We then employ (49) and (50), which leads to

1
!t

(‖sn+1
1 ‖20,# + ‖sn+1

2 ‖20,#) + (θ − A(u,!t) − max{C1,C2}) (‖sn+1
1 ‖20,# + sn+1

2 ‖20,#)

+ (θ − C1)

∫

#
e−θ tn+1Msn+1

1 + (θ − C2)

∫

#
e−θ tn+1Msn+1

2 ≤ 0,

and if we choose θ ≥ A(u,!t) + max{C1,C2}, then we conclude, from the expression above,
that sn+1

1 = sn+1
2 = 0. This leads to a contradiction with sn+1

1 , sn+1
2 > 0, and hence wn+1

1 ,wn+1
2 ≤

e−θ tn+1M. An appeal to the induction principle completes the rest of the proof. !

Lemma 2.7: T(S) is relatively compact in [L2(#)]2.

Proof: First we show that T(S) is bounded in [H1(#)]2, i.e. we need to show that (wn+1
1 ,wn+1

2 ) :=
T(ŵn+1

1 , ŵn+1
2 ) ∈ [H1(#)]2 for any (ŵn+1

1 , ŵn+1
2 ) ∈ S . By taking s1 = wn+1

1 in (44) and employ-
ing (40) with the de"nition of S , we immediately see that

1
!t

‖wn+1
1 ‖20,# + Dmin

1

∫

#
|∇wn+1

1 |2 =
∫

#

div (us,n+1 − us,n)
2!t

(wn+1
1 )2 +

∫

#

wn
1w

n+1
1

!t

− θ‖wn+1
1 ‖20,# +

∫

#
e−θ tn+1 f n+1wn+1

1 . (51)

Using the boundedness of the terms appearing in the right-hand side of (51), we have

‖wn+1
1 ‖1,# ≤ Constant,

and thuswn+1
1 ∈ H1(#). Showing thatwn+1

2 ∈ H1(#) is analogous. Now compact embedding of vec-
tor space [H1(#)]2 into [L2(#)]2 together with boundedness of T(S) conclude that T(S) is relatively
compact in [L2(#)]2. !

Lemma 2.8: The map T is continuous.

Proof: Let (ŵn+1
1,k , ŵn+1

2,k )k ∈ S be a sequence such that (ŵn+1
1,k , ŵn+1

2,k )k → (ŵn+1
1 , ŵn+1

2 ) in [L2(#)]2

as k → ∞. From the de"nition of T we have that (wn+1
1,k ,wn+1

2,k ) = T(ŵn+1
1,k , ŵn+1

2,k ).
We then proceed to extract from (ŵn+1

1,k , ŵn+1
2,k )k a subsequence (ŵn+1

1,kj , ŵ
n+1
2,kj )j which converges to

(ŵn+1
1 , ŵn+1

2 ) a.e. in#. Consequently, and owing to the continuity and boundedness of the function,
we have that r(ŵn+1

1,kj , ŵ
n+1
2,kj ) converges to r(ŵn+1

1 , ŵn+1
2 ) in [L2(#)]2.Moreover, since the subsequence

(wn+1
1,kj ,w

n+1
2,kj )j is bounded in [H1(#)]2, there exists a subsequence (wn+1

1,(kj)q ,w
n+1
2,(kj)q)q such that

(wn+1
1,(kj)q ,w

n+1
2,(kj)q)q

q→∞
−−−→ (wn+1

1 ,wn+1
2 ),

weakly in [H1(#)]2, strongly in [L2(#)]2, and a.e. in #. And after taking the limit q → ∞ in (44)-
(45) with variables (ŵn+1

1,(kj)q , ŵ
n+1
2,(kj)q), we can assert that the converging subsequence of (w

n+1
1,k ,wn+1

2,k )k

in [L2(#)]2 has as a limit (wn+1
1 ,wn+1

2 ) = T(ŵn+1
1 , ŵn+1

2 ). Proceeding in a similar fashion, we can
safely say that all convergent subsequences of (wn+1

1,k ,wn+1
2,k )k have a unique limit T(ŵn+1

1 , ŵn+1
2 ) =

(wn+1
1 ,wn+1

2 ). Using Lemma 2.7 and the fact that every subsequence of (wn+1
1,k ,wn+1

2,k )k has a unique
limit, we can conclude that (wn+1

1,k ,wn+1
2,k )k converges to T(ŵn+1

1 , ŵn+1
2 ) in [L2(#)]2. !
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In view of the above results, an application of the generalised Schauder’s theorem (Lemma 2.5)
enable us to state the following existence theorem.

Theorem 2.1: The semi-discrete formulation (15)–(19) for problem (9) possesses at least one solution.

2.5. Uniqueness of weak solutions

In order to obtain the uniqueness of the weak solution of (15)–(19), we establish the following two
preliminary results.

Lemma 2.9: Let Un+1,Pn+1,χn+1,Wn+1
1 , and Wn+1

2 di"erences between two solutions associated
with the semi-discrete weak formulation (15)–(19). Then

‖Un+1‖21,# + c0‖Pn+1‖20,# + ‖χn+1‖20,# + ‖P‖2l2(H1(#))
≤ C

(
‖U0‖21,# + ‖P0‖20,# + ‖χ0‖20,#

+
n∑

m=0
‖bm+1

1 − bm+1
2 ‖20,# + ‖$1 − $2‖2l2(L2(#))

+
n∑

m=0

(
‖Pm+1‖20,# + ‖χm+1‖20,#

+ ‖Wm+1
1 ‖20,# + ‖Wm+1

2 ‖20,#
))

. (52)

Proof: We follow the strategy adopted in [11] and de"ne two solutions (us,n+1
1 , pf ,n+1

1 ,ψn+1
1 ,w1,n+1

1 ,
w1,n+1
2 ) and (us,n+1

2 , pf ,n+1
2 ,ψn+1

2 ,w2,n+1
1 ,w2,n+1

2 ) associatedwith initial data bn+1
1 , $n+1

1 , us,01 , pf ,01 ,ψ0
1 ,

w1
1,0,w1

2,0, and bn+1
2 , $n+1

2 , us,02 , pf ,02 ,ψ0
2 , w2

1,0,w2
2,0, respectively, and then

Un+1 = us,n+1
1 − us,n+1

2 , Pn+1 = pf ,n+1
1 − pf ,n+1

2 , χn+1 = ψn+1
1 − ψn+1

2 ,

Wn+1
1 = w1,n+1

1 − w2,n+1
1 , Wn+1

2 = w1,n+1
2 − w2,n+1

2 .

In this way, it follows from (15)–(17) that

2µ
∫

#
ε(Un+1) : ε(vs) −

∫

#
χn+1 div vs − ρ

∫

#
((bn+1

1 − bn+1
2 ) · vs

− τ

∫

#
(rn+1
1 − rn+1

2 )(k ⊗ k) : ε(vs) = 0,

1
2

(
c0 + α2

λ

)∫

#
δtPn+1qf +

∫

#

κ

η
∇Pn+1 · ∇qf − α

λ

∫

#
qf δtχn+1 −

∫

#

(
$n+1
1 − $n+1

2
)
qf = 0,

−
∫

#
φ divUn+1 + α

λ

∫

#
Pn+1φ − 1

λ

∫

#
χn+1φ = 0,

for all vs ∈ V, all qf ∈ Q, and all φ ∈ Z. Finally, similarly as in the proof of Lemma 2.1 we employ
δtUn+1, Pn+1, δtχn+1 as test functions, together with (22) to arrive at the desired result (52). !

Lemma 2.10: Consider the hypothesis de!ned previously in the statement of Lemma 2.9. Then

‖Wn+1
1 ‖20,# + ‖Wn+1

2 ‖20,# +!t2
n∑

m=0
(‖δtWm+1

1 ‖20,# + ‖δtWm+1
2 ‖20,#) + Dmin!t

n∑

m=0
(|Wm+1

1 |21,#

+ |Wm+1
2 |21,#) ≤ C

(
‖W0

1‖20,# + ‖W0
2‖20,# + ‖U0‖20,# +

n∑

m=0
‖Um+1‖20,#
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+ (1 +!t)
n∑

m=0
(‖Wm+1

1 ‖20,# + ‖Wm+1
2 ‖20,#)

)
. (53)

Proof: We proceed analogously as in the proof of Lemma 2.9. In fact, for the ADR problem, we can
get from (18) and (19) with test functionsWn+1

1 andWn+1
2 , respectively, the relations

1
2
(
δt‖Wn+1

1 ‖20,# +!t‖δtWn+1
1 ‖20,#

)
+ Dmin

1 |Wn+1
1 |21,#

≤
∫

#
(f n+1
1 − f n+1

2 )Wn+1
1 −

∫

#
(δtus,n+1

1 · ∇Wn+1
1 + δtUn+1 · ∇w2,n+1

1 )Wn+1
1 , (54)

1
2
(
δt‖Wn+1

2 ‖20,# +!t‖δtWn+1
2 ‖20,#

)
+ Dmin

2 |Wn+1
2 |21,#

≤
∫

#
(gn+1

1 − gn+1
2 )Wn+1

2 −
∫

#
(δtus,n+1

1 · ∇Wn+1
2 + δtUn+1 · ∇w2,n+1

2 )Wn+1
2 . (55)

As in Lemma 2.4, we integrate by parts (54) and assume that wj,n+1
i ∈ W1,∞(#), i, j = 1, 2, which

yields

1
2
(
δt‖Wn+1

1 ‖20,# +!t‖δtWn+1
1 ‖20,#

)
+ Dmin

1 |Wn+1
1 |21,# ≤ ‖f n+1

1 − f n+1
2 ‖0,#‖Wn+1

1 ‖0,#

+ 1
2
‖δtus,n+1

1 ‖1,∞,#‖Wn+1
1 ‖20,# + ‖w2,n+1

1 ‖1,∞,#‖δtUn+1‖0,#‖Wn+1
1 ‖0,#, (56)

and applying Cauchy-Schwarz and Young inequalities together with (21) and the boundedness of
‖us,n+1

1 − us,n1 ‖1,∞,#, we get the bound

1
2
(
δt‖Wn+1

1 ‖20,# +!t‖δtWn+1
1 ‖20,#

)
+ Dmin

1 |Wn+1
1 |21,# ≤ C

(
‖Wn+1

1 ‖20,# + ‖Wn+1
2 ‖20,#

+ 1
2!t

‖Wn+1
1 ‖20,# + !t

2
‖δtUn+1‖20,# + 1

2!t
‖Wn+1

1 ‖20,#
)
. (57)

Multiplying (57) by!t and taking summation over n, we deduce that

‖Wn+1
1 ‖20,# +!t2

n∑

m=0
‖δtWm+1

1 ‖20,# + Dmin
1 !t

n∑

m=0
|Wm+1

1 |21,# ≤ C
(

‖W0
1‖20,# + ‖U0‖20,#

+
n∑

m=0

(
(1 +!t)‖Wm+1

1 ‖20,# + ‖Wm+1
2 ‖20,#

)
+

n∑

m=0
‖Um+1‖20,#

)
. (58)

Now, proceeding for Equation (55) in a similar way as done for (56)–(58), we can obtain the same
bound forWn+1

2 , which together with (58) gives (53). !

With the previous two results, we are in a position to establish the announced property of the weak
solution to problem (15)–(19).

Theorem 2.2: The semi-discrete weak formulation (15)–(19) of the coupled problem (9) has a unique
solution.

Proof: The desired estimate is established by combining (52) and (53), and Gronwall’s lemma

‖Un+1‖1,# + ‖Pn+1‖0,# + ‖χn+1‖0,# + ‖Wn+1
1 ‖0,# + ‖Wn+1

2 ‖0,#
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+ ‖P‖l2(H1(#)) + ‖∇W1‖l2(L2(#))

+ ‖∇W2‖l2(L2(#)) ≤ C
(

‖U0‖1,# + ‖P0‖0,# + ‖χ0‖0,# + ‖W0
1‖0,# + ‖W0

2‖0,#

+
n∑

m=0
‖bm+1

1 − bm+1
2 ‖0,# + ‖$1 − $2‖l2(L2(#))

)
,

from which, we can ensure the existence of at most one weak solution to the system (15)–(19). !

2.6. Continuous dependence on data

Lemma 2.11: The solution (us,n+1, pf ,n+1,ψn+1,wn+1
1 ,wn+1

2 ) ∈ V × Q × Z × H1(#) × H1(#) of
problem (15)–(19) satis!es

‖us,n+1‖1,# +
√
c0‖pf ,n+1‖0,# + ‖ψn+1‖0,# + ‖pf ‖$2(H1(#)) + ‖wn+1

1 ‖0,# + ‖wn+1
2 ‖0,#

≤ C√exp
{
n!t + ‖us,0‖1,# + ‖pf ,0‖0,# + ‖ψ0‖0,# + ‖w0

1‖0,# + ‖w0
2‖0,#

+
n∑

m=0
‖bm+1‖0,# + ‖$‖$2(L2(#))

}

.

where C> 0 is a constant independent of!t and λ.

Proof: We focus "rst on the Biot system. Proceeding as in the proof of Lemma 2.1, we take vs =
δtus,n+1, qf = pf ,n+1 and φ = δtψ

n+1 in (15), (16) and (17), respectively, to obtain

‖us,n+1‖21,# + c0‖pf ,n+1‖20,# + ‖ψn+1‖20,# +!t
n∑

m=0
‖pf ,m+1‖21,#

≤ C1

{

‖us,0‖21,# + ‖pf ,0‖20,# + ‖ψ0‖20,# +
n∑

m=0
‖ψm+1‖20,# +

n∑

m=0
‖pf ,m+1‖20,#

+
n∑

m=0
‖rm+1‖20,# +

n∑

m=0
‖bm+1‖20,# +!t

n∑

m=0

∥∥$m+1∥∥2
0,#

}

+ C2
{
‖rn+1‖20,# + ‖bn+1‖20,#

}
.

(59)

In turn, for the ADR problem, we proceed as in the proof of Lemma 2.4, taking s1 = wn+1
1 and s2 =

wn+1
2 in (18) and (19), respectively, to get

‖wn+1
1 ‖20,# + ‖wn+1

2 ‖20,# +!t
n∑

m=0
(‖∇wm+1

1 ‖20,# + ‖∇wm+1
2 ‖20,#)

≤ C3

{

n + ‖w0
1‖20,# + ‖w0

2‖20,# +
n∑

m=0

(
‖wm+1

1 ‖20,# + ‖wm+1
2 ‖20,#

)}

. (60)

Combining (59) and (60), we obtain a preliminar stability bound for the coupled system (15)–(19)

‖us,n+1‖21,# + c0‖pf ,n+1‖20,# + ‖ψn+1‖20,# +!t
n∑

m=0
‖pf ,m+1‖21,# + ‖wn+1

1 ‖20,# + ‖wn+1
2 ‖20,#
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≤ C1

{

‖us,0‖21,# + ‖pf ,0‖20,# + ‖ψ0‖20,# +
n∑

m=0
‖ψm+1‖20,# +

n∑

m=0
‖pf ,m+1‖20,#

+
n∑

m=0
‖rm+1‖20,# +

n∑

m=0
‖bm+1‖20,# +!t

n∑

m=0

∥∥$n+1∥∥2
0,#

}

+ C2
{
‖rn+1‖20,# + ‖bn+1‖20,#

}

+ C3

{

n!t + ‖w0
1‖20,# + ‖w0

2‖20,# +
n∑

m=0

(
‖wm+1

1 ‖20,# + ‖wm+1
2 ‖20,#

)}

,

and therefore, recalling the bound for r given in Section 2.2, and applying Gronwall’s inequality to
the resulting estimate, we obtain the desired result. !

Remark 2.1: We have demonstrated the well-posedness of the fully coupled system by considering
the time discretisation which is one of the main purpose of this contribution, and the analysis of con-
tinuous in time problem is not presented here explicitly, and which also could be of potential interest
as discussed by many researchers, for instance, see [11]. We stress that the analysis of continuous
in time problem also can be established by proceeding analogously to the analysis presented here in
the context of time discretisation and adopting the similar arguments used in [11] with appropriate
choices of Sobolev spaces.

3. Mixed-primal Galerkin method

3.1. Fully discrete formulation

Let us consider a family {Th}h>0 of shape-regular, quasi-uniform partitions of the spatial domain
#̄ into a#ne elements (triangles in 2D or tetrahedra in 3D) E of diameter hE, where h = max{hE :
E ∈ Th} denotes the mesh size. Finite-dimensional subspaces of the functional spaces employed in
Section 2 will be de"ned in the following manner

Vh := {vsh ∈ C(#) : vsh|E ∈ [P1(E) ⊕ span{bE}]d ∀ E ∈ Th, and vsh|. = 0},
Qh := {qfh ∈ C(#) : qfh|E ∈ P1(E) ∀E ∈ Th, and qfh|/ = 0},
Zh := {φh ∈ C(#) : φh|E ∈ P1(E) ∀ E ∈ Th}, Wh := {wh ∈ C(#) : wh|E ∈ P1(E) ∀ E ∈ Th},

(61)
where Pk(E) denotes the space of polynomials of degree less than or equal than k de"ned locally over
E ∈ Th, and bE := ϕ1ϕ2ϕ3 is a P3 bubble function in E, and ϕ1, ϕ2 ,ϕ3 are the barycentric coordinates
of E. Let us recall that the pair (Vh,Zh) (known as the MINI element) is inf-sup stable (see, e.g. [21]).

Considering reaction and coupling terms f, g, r discretised implicitly, the fully discrete scheme
associated with (14) is de"ned as: From initial data us,0, pf ,0,ψ0,w0

1,w
0
2 (which will be projections

of the continuous initial conditions of each "eld) and for n = 1, . . ., "nd us,n+1
h ∈ Vh, p

f ,n+1
h ∈

Qh,ψn+1
h ∈ Zh,wn+1

1,h ∈ Wh,wn+1
2,h ∈ Wh such that

a1(us,n+1
h , vsh) + b1(vsh,ψ

n+1
h ) = Frn+1

h
(vsh) ∀ vsh ∈ Vh, (62)

ã2(p
f ,n+1
h , qfh) + a2(p

f ,n+1
h , qfh) − b̃2(q

f
h,ψ

n+1
h ) = G$n+1(qfh) ∀ qfh ∈ Qh, (63)

b1(us,n+1
h ,φh) + b2(p

f ,n+1
h ,φh) − a3(ψn+1

h ,φh) = 0 ∀ φh ∈ Zh, (64)

ã4(wn+1
1,h , s1,h) + a4(wn+1

1,h , s1,h) + c(wn+1
1,h , s1,h, us,n+1

h ) = Jf n+1
h

(s1,h) ∀s1,h ∈ Wh, (65)

ã5(wn+1
2,h , s2,h) + a5(wn+1

2,h , s2,h) + c(wn+1
2,h , s2,h, us,n+1

h ) = Jgn+1
h

(s2,h) ∀s2,h ∈ Wh. (66)
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3.2. Stability of the discrete solutions

The following two lemmas will serve to establish the stability result for the discrete solutions.

Lemma 3.1: Assume that (us,n+1
h , pf ,n+1

h ,ψn+1
h ,wn+1

1,h ,wn+1
2,h ) ∈ Vh × Qh × Zh × Wh × Wh is solu-

tion of problem (62)–(66). Then

1
2λ

‖ψn+1
h ‖20,# + 1

2

(
c0 + α2

λ

)(
‖pf ,n+1

h ‖20,# +!t2
n∑

m=0
‖δtp

f ,m+1
h ‖20,#

)
+
κ1cp!t
2η

n∑

m=0
‖pf ,m+1

h ‖21,#

≤ 1
2λ

‖ψ0
h‖

2
0,# + 1

2

(
c0 + α2

λ

)
‖pf ,0h ‖20,# + 2α2

λ

n∑

m=0
‖pf ,m+1

h ‖20,# + η!t
2κ1cp

n∑

m=0

∥∥$m+1∥∥2
0,#

+ 1
µCk,1

‖ψn+1
h ‖20,# + µCk,1

2
‖us,n+1

h ‖21,# + 2
µCk,1

n−1∑

m=0
‖ψm+1

h ‖20,#

+ µCk,1!t2

4

n−1∑

m=0
‖δtum+1

h ‖21,#, (67)

µCk,1‖us,n+1
h ‖21,# + µCk,1!t2

4

n∑

m=0
‖δtus,m+1

h ‖21,#

≤ C1

{

‖us,0h ‖21,# +
n∑

m=0
‖ψm+1

h ‖20,# +
n∑

m=0
‖rm+1

h ‖20,# +
n∑

m=0
‖bm+1‖20,#

}

, (68)

and
‖ψn+1

h ‖20,# ≤ C2
{
‖us,n+1

h ‖21,# + ‖rn+1
h ‖20,# + ‖bn+1‖20,#

}
, (69)

where C1,C2 are positive constants independent of λ, h, and!t.

Proof: We proceed similarly to the proof of Lemmas 2.1 and 2.4. We focus "rst on the stabil-
ity of (62)–(64). Taking vsh = δtus,n+1

h in (62), using Cauchy-Schwarz inequality, applying Young’s
inequality with constants chosen conveniently, and then, summing over n and multiplying by!t, we
readily get (68), where C1 is a constant depending on µ,Ck,1,Ck,2, ρ, and τ . Now, in Equations (63)
and (64), we take qfh = pf ,n+1

h and φh = δtψ
n+1
h , respectively, to obtain

1
2λ
δt‖ψn+1

h ‖20,# + !t
2λ

‖δtψn+1
h ‖20,# + 1

2

(
c0 + α2

λ

)(
δt‖p

f ,n+1
h ‖0,# +!t‖δtp

f ,n+1
h ‖0,#

)

+ κ1
η

|pf ,n+1
h |21,#

≤ 2α
λ

‖pf ,n+1
h ‖0,#‖δtψn+1

h ‖0,# +
∥∥$n+1∥∥

0,# ‖pf ,n+1
h ‖0,# −

∫

#
δtψ

n+1
h div us,n+1

h , (70)

Thus, applying Young’s inequality to the "rst and second term, and summation by parts to the last
term, on the right-hand side of (70), we obtain (67).

On the other hand, as in Lemma 2.1 we target an estimate independent of λ. For that reason we use
the discrete version of the inf-sup condition (25), which is satis"ed by the "nite element family (61)
[20, 21]. Thus, taking φh = ψn+1

h , using (62) and the continuity of a1, we obtain

β̂‖ψn+1
h ‖0,# ≤ sup

vsh∈Vh

b1(vsh,ψ
n+1
h )

‖vsh‖1,#
= sup

vsh∈Vh

−a1(us,n+1
h , vsh) + Frn+1

h
(vsh)

‖vsh‖1,#

≤ 2µCk,2‖ε(un+1
h )‖0,# +

√
Ck,2τ‖rn+1

h ‖0,# + ρ‖bn+1‖0,#,
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which can be written equivalently as (69), with C2 depending on Ck,1,Ck,2,µ, τ , ρ and the discrete
inf-sup constant β̂ . !

Lemma 3.2: Assume that (us,n+1
h , pf ,n+1

h ,ψn+1
h ,wn+1

1,h ,wn+1
2,h ) ∈ Vh × Qh × Zh × Wh × Wh is solu-

tion of problem (62)–(66). Then

1
2

2∑

i=1
‖wn+1

i,h ‖20,# + 1
2
!t2

2∑

i=1

n∑

m=0
‖δtwm+1

i,h ‖20,# +!t
2∑

i=1

n∑

m=0
Dmin
i ‖∇wm+1

i,h ‖20,#

≤ 1
2

2∑

i=1
‖w0

i,h‖
2
0,# + 1

2
(M1 +!t)

2∑

i=1

n∑

m=0
‖wm+1

i,h ‖20,# + !t
2

n∑

m=0
‖f m+1

h ‖20,#

+ !t
2

n∑

m=0
‖gm+1

h ‖20,#. (71)

Proof: Notice that for the ADR problem (65)–(66), by taking s1,h = wn+1
1,h in (65), we get

∫

#
δtwn+1

1,h wn+1
1,h +

∫

#
D1(x)∇wn+1

1,h · ∇wn+1
1,h +

∫

#
(δtus,n+1

h · ∇wn+1
1,h )wn+1

1,h =
∫

#
f n+1
h wn+1

1,h ,

and then, applying (40) and Cauchy-Schwarz inequality, we deduce the estimate

1
2
δt‖wn+1

1,h ‖20,# + 1
2
!t‖δtwn+1

1,h ‖20,# + Dmin
1 ‖∇wn+1

1,h ‖20,#

≤ 1
2
‖δtus,n+1

h ‖1,∞,#‖wn+1
1,h ‖20,# + ‖f n+1

h ‖0,#‖wn+1
1,h ‖0,#.

Since # is a bounded domain and the elements of Vh are piecewise polynomials, we know that
‖us,n+1

h − us,nh ‖1,∞,# < +∞ for each un+1
h , unh ∈ Vh (see, e.g. [12]), and then, without loss of gen-

erality, we may assume that ‖us,n+1
h − us,nh ‖1,∞,# ≤ M1 for some M1 ∈ R. Thus, applying Young’s

inequality, summing over n and multiplying by!t, we obtain the following result

1
2
‖wn+1

1,h ‖20,# + 1
2
!t2

n∑

m=0
‖δtwm+1

1,h ‖20,# + Dmin
1 !t

n∑

m=0
‖∇wm+1

1,h ‖20,#

≤ 1
2
‖w0

1,h‖
2
0,# + 1

2
(M1 +!t)

n∑

m=0
‖wm+1

1,h ‖20,# + !t
2

n∑

m=0
‖f m+1

h ‖20,#. (72)

Moreover, we realise that an estimate for ‖wn+1
2,h ‖0,# stays exactly as above, which is

1
2
‖wn+1

2,h ‖20,# + 1
2
!t2

n∑

m=0
‖δtwm+1

2,h ‖20,# + Dmin
2 !t

n∑

m=0
‖∇wm+1

2,h ‖20,#

≤ 1
2
‖w0

2,h‖
2
0,# + 1

2
(M1 +!t)

n∑

m=0
‖wm+1

2,h ‖20,# + !t
2

n∑

m=0
‖gm+1

h ‖20,#, (73)

therefore completing the proof. !

Finally, we can establish the stability result for the discrete solution.
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Lemma 3.3: Assume that (us,n+1
h , pf ,n+1

h ,ψn+1
h ,wn+1

1,h ,wn+1
2,h ) ∈ Vh × Qh × Zh × Wh × Wh is solu-

tion of problem (62)–(66). Then, there exists C> 0 independent of λ, h, and!t, such that

‖us,n+1
h ‖1,# +

√
c0‖p

f ,n+1
h ‖0,# + ‖ψn+1

h ‖0,# + ‖pfh‖$2(H1(#)) + ‖wn+1
1,h ‖0,# + ‖wn+1

2,h ‖0,#

≤ C√exp
{
n!t + ‖us,0h ‖1,# + ‖pf ,0h ‖0,# + ‖ψ0

h‖0,# + ‖w0
1,h‖0,#

+‖w0
2,h‖0,# +

n+1∑

m=0
‖bm+1‖0,# + ‖$‖$2(L2(#))

}

. (74)

Proof: The result (74) follows from the growth condition on fh and gh, adding (68), (67), (69),
and (71), recalling the bound for r, and applying the discrete Gronwall’s inequality. !

Remark 3.1: The solvability analysis of (62)–(66) can be established similarly to the continuous case.
More precisely, as in Section 2.3 we need to de"ne a "xed-point operator, whose well-de"niteness will
depend upon the solvability of each uncoupled problem. For the discrete poroelasticity systemwe can
adapt the analysis from [8, Section 3], whereas for the approximate ADR equations we can apply clas-
sical techniques for discrete quasi-linear problems [22]. Next, we need to prove the continuity of the
operator going from [Wh]2 into itself, which follows as a consequence of the estimate (74) in combi-
nation with the ideas employed in [11, Section 5.3]. Finally, the result follows from an application of
the well-known Brouwer "xed-point theorem.

Remark 3.2: We stress that the all the arguments and techniques used in proving the stability of the
discrete-in-time problem, may not be directly applicable for ensuring the stability of the proposed
fully discrete scheme, as the discrete variables involved in the formulation may not have enough reg-
ularity as demanded in the semi-discrete analysis. Moreover, the ideas developed in illustrating the
stability of a fully discrete scheme will be repeatedly used in the establishment of error estimates.

4. Error estimates

In order to see the rate of convergence of the proposed fully discrete scheme, we will derive the
error estimates in suitable norms for each of the variables that appear in the formulation. For
establishing the error estimates, we will be utilising the well-known techniques/arguments used for
time-dependent problems and imitating the steps used in showing stability. Therefore, we would like
to provide a brief sketch of the proof by citing the appropriate references for more details. First, we
de"ne the following projection operator

Ah := (Au
h ,A

p
h,A

ψ
h ,A

w1
h ,Aw2

h ),

where (Au
h ,A

ψ
h ) and Ap

h,A
w1
h ,Aw2

h are standard Stokes operator and elliptic projections respectively,
de"ned as follows, ∀vh ∈ Vh,φh ∈ Zh,∀qh ∈ Qh and ∀wi ∈ Wh, i = 1, 2,

a1(Au
hu

s, vsh) + b1(vsh,A
ψ
h ψ) = a1(us, vsh) + b1(vsh,ψ); b1(Au

hu
s,φh) = b1(us,φh); (75)

a2(A
p
hp

f , qfh) = a2(pf , q
f
h); (∇Awi

h wi,∇si,h) = (∇wi,∇si,h). (76)

These operators satisfy the following estimates (see, for instance, [20, 22]):

‖us − Au
hu

s‖0,# + h(|us − Au
hu

s|1,# + ‖ψ − Aψh ψ‖0,#) ≤ Ch2, (77)

‖pf − Ap
hp

f ‖0,# + h|pf − Ap
hp

f |1,# ≤ Ch2, (78)
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‖wi − Awi
h wi‖0,# + h|wi − Awi

h wi|1,# ≤ Ch2, i = 1, 2. (79)

Theorem 4.1: Let (us(t), pf (t),ψ(t),w1(t),w2(t)) and (us,n+1
h , pf ,n+1

h ,ψn+1
h ,wn+1

1,h ,wn+1
2,h ) be the

unique solutions to the systems (14) and (62)–(66), respectively. Then the following estimate holds, with
constant C independent of h and!t,

‖us,n+1 − us,n+1
h ‖21,# + ‖ψn+1 − ψn+1

h ‖20,# + (!t)
n∑

k=0
|pf ,k+1 − pf ,k+1

h |21,#

+ (!t)
n∑

k=0

(
|wk+1

1 − wk+1
1,h |21,# + |wk+1

2 − wk+1
2,h |21,#

)
≤ C(h2 +!t2). (80)

Proof: First we decompose the error as follows for each t and i = 1, 2:

ξ − ξh = ξ − Ahξ + Ahξ − ξh,

= (us − Au
hu

s
︸ ︷︷ ︸

:=ρu

+Au
hu

s − ush︸ ︷︷ ︸
:=ηu

, pf − Ap
hp

f
︸ ︷︷ ︸

:ρp

+Ap
hp

f − pfh︸ ︷︷ ︸
:=ηp

,ψ − Aψh ψ︸ ︷︷ ︸
:ρψ

+ Aψh ψ − ψh︸ ︷︷ ︸
:=ηψ

,wi − Awi
h wi︸ ︷︷ ︸

:=ρwi

+Awi
h wi − wi,h︸ ︷︷ ︸

:=ηwi

),

where ξ = (us, pf ,ψ ,w1,w2) and ξh = (ufh, p
f
h,ψh,w1,h,w2,h). On subtracting (62)–(66) from (14),

choosing vsh = δtη
n+1
u ,φh = ηn+1

ψ , qfh = ηn+1
p , s1,h = ηn+1

w1 and s2,h = ηn+1
w2 and invoking (75)

and (76), enable us to write the following error equations

a1(ηn+1
u , δtηn+1

u ) + b1(δtηn+1
u , ηn+1

ψ )

= (Frn+1 − Frn+1
h

)(δtη
n+1
u ), (81)

ã2(ηn+1
p , ηn+1

p ) + a2(ηn+1
p , ηn+1

p ) − b̃2(ηn+1
p , ηn+1

ψ )

= −ã2(ρn+1
p , ηn+1

p ) + b̃2(ηn+1
p , ρn+1

ψ )

−
(
c0 + α2

λ

)
(∂tp(·, tn+1) − δtpn+1, ηn+1

p )

−
(α
λ

)
(ηn+1

p , ∂tψ − δtψ
n+1), (82)

b1(ηn+1
u , ηn+1

ψ ) + b2(ηn+1
p , ηn+1

ψ ) − a3(ηn+1
ψ , ηn+1

ψ )

= −b2(ρn+1
p , ηn+1

ψ ) + a3(ρn+1
ψ , ηn+1

ψ ), (83)

ã4(ηn+1
w1 , ηn+1

w1 ) + a4(ηn+1
w1 , ηn+1

w1 )

= Jf n+1−f n+1
h

(ηn+1
w1 ) − ã4(ρn+1

w1 , ηn+1
w1 )

− (∂tw1(·, tn+1) − δtwn+1
1 , ηn+1

w1 )

−
(
c(wn+1

1 , ηn+1
w1 , us,n+1) − c(wn+1

1,h , ηn+1
w1 , us,n+1

h )
)
, (84)

ã5(ηn+1
w2 , ηn+1

w2 ) + a5(ηn+1
w2 , ηn+1

w2 )

= Jgn+1−gn+1
h

(ηn+1
w2 ) − ã5(ρn+1

w2 , ηn+1
w2 )
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− (∂tw2(·, tn+1) − δtwn+1
2 , ηn+1

w2 )

−
(
c(wn+1

2 , ηn+1
w2 , us,n+1) − c(wn+1

2,h , ηn+1
w2 , us,n+1

h )
)
. (85)

We then proceed to rewrite Equation (83) for n+ 1 and n and then subtracting these equations (as
done in, e.g. [9, Lemma 4.1]). Then we combine Equations (81)–(83) (see also [24]), and we then
multiply by !t the resulting expression together with the error Equations (84)–(85). Summing the
result over each n and proceeding similarly as in the proofs of Lemmas 2.1 and 2.4, we arrive at

µCk,1‖ηn+1
u ‖21,# + ‖ηn+1

ψ ‖20,# + c0‖ηn+1
p ‖20,# + κ1

η
(!t)

n∑

k=0
|ηk+1

p |21,#

≤ µCk,1‖η0u‖21,# +
(
c0 + α2

λ

)
‖η0p‖20,# + 1

λ

n∑

k=0
‖ηkψ‖20,#

+!t
n∑

k=0

(
(Frk+1 − Frk+1

h
)(δtη

k+1
u ) − a1(ρk+1

u , δtηk+1
u ) − b1(δtηk+1

u , ρk+1
ψ ) − ã2(ρk+1

p , ηk+1
p )

− a2(ρk+1
p , ηk+1

p ) + b̃2(ηk+1
p , ρk+1

ψ ) + b1(δtρk+1
u , ηk+1

ψ ) − b2(δtρk+1
p , ηk+1

ψ )

+ a3(δtρk+1
ψ , ηk+1

ψ ) −
(
c0 + α2

λ

)
(∂tp(·, tk+1) − δtpk+1, ηk+1

p )

−
(α
λ

)
(ηk+1

p , ∂tψ − δtψ
k+1) − (∂tw1(·, tk+1) − δtwk+1

1 , ηk+1
w1 )

− (∂tw2(·, tk+1) − δtwk+1
2 , ηk+1

w2 )
)
, (86)

and

‖ηn+1
wi ‖20,# + Dmin

i (!t)
n∑

k=0
|ηk+1

wi |21,#

≤ ‖η0wi‖
2
0,# + |η0wi |

2
1,# +!t

n∑

k=0

(
Jf k+1−f k+1

h
(ηk+1

wi ) − ã4(ρk+1
wi , ηk+1

wi ) − c(wk+1
i , ηn+1

wi , us,k+1)

− c(wk+1
i,h , ηn+1

wi , us,k+1
h ) − (∂twi(·, tk+1) − δtwk+1

i , ηk+1
wi )

)
. (87)

In view of (22), (21), Cauchy-Schwarz, Poincare and Young’s inequalities, we obtain the following
bounds for the nonlinear terms appearing in (86), (87)

!t
n∑

k=0
(Frk+1 − Frk+1

h
)(δtη

k+1
u ) ≤ C!t

(
‖η0u‖20,# +

n∑

k=0
(

2∑

i=1
(‖ρk+1

wi ‖20,# + ‖ηk+1
wi ‖20,#) + ‖ηk+1

u ‖20,#)
)
,

!t
n∑

k=0
Jf k+1−f k+1

h
(ηk+1

w1 ) ≤ C!t
n∑

k=0

(
‖ηk+1

w1 ‖20,# + ‖ηk+1
w2 ‖20,#

)
,

!t
n∑

k=0
Jgk+1−gk+1

h
(ηk+1

w2 ) ≤ C!t
n∑

k=0

(
‖ηk+1

w2 ‖20,# + ‖ηk+1
w2 ‖20,#

)
.

Then, a repeated application of Cauchy-Schwarz and Young’s inequalities together with the assump-
tion ‖us,n+1‖1,∞,# and noting that ‖wn+1

i,h ‖1,∞,# ≤ C, i = 1, 2 (follow the argument similar to
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obtain (72)) help us in obtaining the following bound for the coupling term of (87) for i = 1, 2.

!t
n∑

k=0

(
c(wk+1

i , ηk+1
wi , us,k+1) − c(wk+1

i,h , ηk+1
wi , us,k+1

h )
)

= !t
n∑

k=0

(
c(ρk+1

wi + ηk+1
wi , ηk+1

wi , us,k+1) + c(wk+1
i,h , ηk+1

wi , ρk+1
u + ηk+1

u )
)

≤ C!t
n∑

k=0

(
|ρk+1

w1 |1‖ηk+1
w1 ‖0‖δtus,k+1‖0,∞,# + ‖ηk+1

w1 ‖20‖δtus,k+1‖1,∞,#

+ ‖wk+1
1,h ‖1,∞,#‖ηk+1

w1 ‖0(‖δtηk+1
u ‖0 + ‖δtρk+1

u ‖0)
)

≤ C

(

‖η0u‖20,# + ‖ρ0u‖20,# +
n∑

k=0

(
‖us,k+1 − us,k‖1,∞,#(|ρk+1

wi |21,# + ‖ηk+1
wi ‖20,#)

+‖wk+1
i,h ‖1,∞,#(‖ηk+1

wi ‖20,# + ‖ηk+1
u ‖20,# + ‖ρk+1

u ‖20,#)
))

.

We then proceed to collect all these bounds, and we employ a proper choice of (u0h, p
0
h,ψ

0
h ,w

0
1,h,w

0
2,h).

Next we gather these results and use Taylor’s expansion in the following form: for any smooth enough
function ξ , we have

(ξn+1 − ξn) − (!t)∂tξ(·, tn+1) =
∫ tn+1

tn
(s − tn)∂ttξ(·, s) ds.

We can then apply the result 74 and Gronwall’s inequality, which yields

‖ηn+1
u ‖21,# + ‖ηn+1

ψ ‖20,# + (!t)
n∑

k=0

(
|ηk+1

p |21,# + |ηk+1
w1 |21,# + |ηk+1

w2 |21,#
)

≤ C(h2 +!t2).

Finally, the estimates (77)–(79) together with a direct application of triangle’s inequality complete the
rest of the proof. !

5. Numerical tests

5.1. Example 1: veri"cation of spatio-temporal convergence

We have not derived theoretically error bounds, but proceed in this Section to examine numerically
the rates of convergence of themixed-primal scheme. Let us consider# = (0, 1)2 with. = {x : x1 =
0orx2 = 0} (the bottom and left edges of the boundary) and/ = {x : x1 = 1orx2 = 1} (top and right
sides of the square domain). Following [25], we de"ne closed-form solutions to the coupled poro-
mechano-chemical system (9) as

us = u∞
t2

2

(
sin(πx1) cos(πx2) + x21

λ

− cos(πx1) sin(πx2) + x22
λ

)

, pf = t(x31 − x42), ψ = pf − λ div us,

w1 = t[exp(x1) + cos(πx1) cos(πx2)], w2 = t[exp(−x2) + sin(πx1) sin(πx2)],

(88)

and we use these smooth functions to construct expressions for the body force b(x, t), the $uid source
$(x, t), additional mass sources S1(x, t), S2(x, t) for (5)–(6); a non-homogeneous displacement and
non-homogeneous $uid normal $ux on ., as well as non-homogeneous Dirichlet boundary pres-
sure and non-homogeneous traction de"ned on /. The model parameters take the values: u∞ =
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Figure 1. Test 1. Convergence of the discretisation for the coupled poro-mechano-chemical problem. Error decay in space (left)
and error history in time (right, where errors are computed from (89)).

α = γ = 0.1, c0 = η = 10−3, κ = 10−4, D1 = 0.05, D2 = ρ, β1 = 170, β2 = 0.1305, β3 = 0.7695,
µ = 10033.444, λ = 993311.037, and τ = 105. For this example we simply take the function that
modulates the active stress in (8) as r = w1 + w2 and use k = (1, 0)T .

To con"rm numerically the spatial accuracy of the discretisation de"ned by the "nite element
spaces speci"ed in (61), we construct a sequence of seven uniformly re"ned meshes and compute
individual approximate errors e(·) for each "eld in their natural spatial norm at the "nal time t"nal =
0.04, and the time-stepping scheme (backward Euler and implicit centred di!erences for "rst and
second order time derivatives, respectively) approximates the polynomial dependence on time in (88)
exactly. The system is solved by the GMRES Krylov solver with incomplete LU factorisation (ILUT)
preconditioning. The stopping criterion on the nonlinear iterations is based on a weighted residual
norm dropping below the "xed tolerance of 1 · 10−5. Moreover, a small "xed time step !t = 0.01 is
used for all mesh re"nements. An average number of three Newton iterations are needed in all levels
to reach convergence. The results are laid out in Figure 1 (left) where we observe an optimal error
decay of O(h) for all "eld variables. We also see that the total error is dominated by the total pressure
(which is large as these errors are not normalised and since the regime is nearly incompressible), but
the convergence rates remain optimal with respect to the expected accuracy given by the interpolation
properties of the "nite element spaces and stated in Theorem 4.1.

The convergence associated with the time discretisation can be more conveniently assessed
considering a di!erent set of closed-form solutions de"ned on a "xed mesh with 4000 elements

us = u∞ sin(t)

(
x21
2λ + x22
x21 + x22

2λ

)

, pf = sin(t)(x21 + x1x2),

w1 = sin(t)(x21 − x22), w2 = sin(t)(x21 + x22).

With the given spatial discretisation, the errors will contain only contributions from the time approx-
imation. We consider now the time interval (0, 1] and choose six time-step uniform re"nements
!t ∈ {0.5, 0.25, . . .} that we use to compute numerical solutions and cumulative errors up to t"nal,
of a generic individual "eld s de"ned as

E(s) =
(
!t

N∑

n=1
‖snh − s(tn)‖20,#

) 1
2
. (89)

Figure 1 (right) indicates that the errors in time are also of "rst order, O(!t), which also aligns with
the convergence rates predicted by Theorem 4.1.
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5.2. Example 2: traction and active stress preventing stable patterning

Finally, we present a simple test to illustrate the application of the model and the proposed "nite
element method in the simulation of spatio-temporal chemical patterns. A rectangular domain is
considered # = (0, 1) × (0, 0.6), where the right segment constitutes the boundary / on which a
periodic-in-time traction is applied. Therewe also impose zero$uid pressure.On the remainder of the
boundary, . = ∂# \/ we prescribe zero displacement and zero $uxes for the $uid. All parameters
are taken as in Example 1, except for the active stress modulation τ = 100. The system is simulated
until for the "rst round of computations t"nal = 1, and we depict in Figure 2 the approximate solu-
tions. The top panels showwhat the distribution of the chemical concentrations are when γ = 0 (that
is, there is no two-way coupling as the chemicals are simply advected and di!used on the medium),
and the distributions of the species are plotted on the reference, undeformed domain. Setting then
γ to a relatively small value γ = 0.05 modi"es entirely the dynamics of the patterns. The periodic
motion of the poroelastic slab and the chemically-induced active stress imply that the stable state of

Figure 2. Test 2. Illustration of two-way coupling betweenporomechanical and chemical effects. Top rows: snapshots of concentra-
tions ofw1,w2 computed using γ = 0, at three different times, reaching a stable state (right). Bottom rows: results obtained using
γ = 0.05, and plotted on the deformed domain. These runs do not reach a stable spatial patterning, even after tfinal = 10.
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the top panels is not reached (even if we continue towards time horizons ten times longer than what
we require in the "rst round of tests to achieve a stable pattern).

We conclude this section summarising also our "ndings from [2] dealing with the spectral linear
stability analysis of the proposed model. We were able to demonstrate that the stability of the cou-
pled system is in$uenced mainly by that of the special cases like homogeneous spatial distribution
or uncoupled advection-di!usion-reaction sub-systems (i.e., τ = 0 and/or γ = 0). We additionally
observed that the strength of the coupling with poro-mechanical e!ects can bypass the conditions
met by uncoupled sub-systems, and lead to linear instability and to the formation of complex spatio-
temporal mechano-chemical patterns. For example, we have determined under which parameter
regimes the system exhibits instability patterns. Also, a detailed derivation of the conditions leading
to instabilities is outlined in the aforementioned reference.

6. Concluding remarks

In this paper we have analysed a model of advection-reaction-di!usion in poroelastic materials. The
set of equations assumes the regime of small strains and the coupling mechanisms are primarily
dependent on source functions of change of volume, and active stresses. All modelling aspects, imple-
mentation details for the mixed-primal scheme, application to biomedically-oriented problems, and
a complete spectral stability analysis for the proposed system, can be found in our recent paper [2]. In
the present contribution we have derived the well-posedness of the problem stated in mixed-primal
form, and we have proposed a suitable mixed "nite element scheme. Our work extends the similar-
in-spirit contribution [11] in that we are able to derive stability bounds that are robust with respect
to the Lamé constants of the solid. Indeed, the main advantage of working with a mixed formulation
for the equations of poroelasticity is to have locking-free "nite element schemes, which are of partic-
ular importance when the solids under consideration have large dilation modulus. These features are
inherited from the method proposed in [8], and a disadvantage with respect of adopting a formula-
tion only in terms of displacement may be that we require more degrees of freedom. It is also noted
that, since the proofs carried out here do not rely entirely on the speci"c form of the reaction terms,
the present formalism is quite general and could be applied to other systems with similar mathemati-
cal and physical structure, such as tumour development dynamics, long bones growth, or embryonic
cell poromechanics.

As perspectives of this work, we aim at extending the analysis of Section 2 to the case of "nite-strain
poroelasticity following the work in [26], to cover also the e!ects of chemotaxis and general cross-
di!usion, as well as interfacial conditions for two-layered materials [4, 13, 27], and to incorporate
viscoelasticity. Further directions include the design of mixed and double-mixed formulations that
would improve the accuracy of the method in producing stresses or other variables of applicative
interest and also contributing to achievemass conservation [25, 28], as well asmesh adaptivemethods
guided by a posteriori error indicators [29, 30].
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